Skip to main content
Log in

The cycling performances of lithium–sulfur batteries in TEGDME/DOL containing LiNO3 additive

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The cycling performance of lithium–sulfur batteries in binary electrolytes based on tetra(ethylene glycol)dimethyl ether (TEGDME) and 1,3-dioxolane(DOL) with lithium nitrate (LiNO3) additive were investigated. The highest ionic conductivity was obtained for 1 M LiN(CF3SO2)2 (LiTFSI) in TEGDME/DOL = 33:67(volume ratio)-based electrolyte. The cyclic efficiency of lithium–sulfur batteries was dramatically increased with LiNO3 additive as a shuttle inhibitor in electrolytes. The lithium–sulfur cell assembled with 1 M LiTFSI in TEGDME/DOL containing 0.2 M LiNO3 additive for electrolyte, the elemental sulfur for cathode, and the lithium metal for anode demonstrated the initial discharge capacity of about 900 mAh g−1 and an enhanced cycling performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wang JL, Yang J, Xie JY, Xu NX, Li Y (2002) Sulfur–carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte. Electrochem Commun 4(6):499–502

    Article  CAS  Google Scholar 

  2. Marmorstein D, Yu TH, Striebel KA, McLarnon FR, Hou J, Cairns EJ (2000) Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes. J Power Sources 89(2):219–226

    Article  CAS  Google Scholar 

  3. Kim S, Jung Y, Park SJ (2007) Effect of imidazolium cation on cycle life characteristics of secondary lithium–sulfur cells using liquid electrolytes. Electrochim Acta 52(5):2116–2122

    Article  CAS  Google Scholar 

  4. Barchasz C, Lepretre JC, Alloin F, Patoux S (2012) New insights into the limiting parameters of the Li/S rechargeable cell. J Power Sources 199:322–330

    Article  CAS  Google Scholar 

  5. Gao XP, Yang HX (2010) Multi-electron reaction materials for high energy density batteries. Energ Environ Sci 3(2):174–189

    Article  CAS  Google Scholar 

  6. Wei SC, Zhang H, Huang YQ, Wang WK, Xia YZ, Yu ZB (2011) Pig bone derived hierarchical porous carbon and its enhanced cycling performance of lithium–sulfur batteries. Energ Environ Sci 4(3):736–740

    Article  CAS  Google Scholar 

  7. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM (2012) Li–O2 and Li–S batteries with high energy storage. Nat Mater 11(1):19–29

    Article  CAS  Google Scholar 

  8. Kolosnitsyn VS, Karaseva EV, Ivanov AL (2008) Electrochemistry of a lithium electrode in lithium polysulfide solutions. Russ J Electrochem 44(5):564–569

    Article  CAS  Google Scholar 

  9. Kim S, Jung YJ, Park SJ (2005) Effects of imidazolium salts on discharge performance of rechargeable lithium–sulfur cells containing organic solvent electrolytes. J Power Sources 152(1):272–277

    Article  CAS  Google Scholar 

  10. Akridge JR, Mikhaylik YV, White N (2004) Li/S fundamental chemistry and application to high-performance rechargeable batteries. Solid State Ionics 175(1–4):243–245

    Article  CAS  Google Scholar 

  11. Ji XL, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater 8(6):500–506

    Article  CAS  Google Scholar 

  12. Kim S, Jung YJ, Lim HS (2004) The effect of solvent component on the discharge performance of lithium–sulfur cell containing various organic electrolytes. Electrochim Acta 50(2–3):889–892

    Article  CAS  Google Scholar 

  13. Yamin H, Gorenshtein A, Penciner J, Sternberg Y, Peled E (1988) Lithium sulfur battery—oxidation reduction mechanisms of polysulfides in THF solutions. J Electrochem Soc 135(5):1045–1048

    Article  CAS  Google Scholar 

  14. Ryu HS, Ahn HJ, Kim KW, Ahn JH, Cho KK, Nam TH, Kim JU, Cho GB (2006) Discharge behavior of lithium/sulfur cell with TEGDME-based electrolyte at low temperature. J Power Sources 163(1):201–206

    Article  CAS  Google Scholar 

  15. Cheon SE, Ko KS, Cho JH, Kim SW, Chin EY, Kim HT (2003) Rechargeable lithium–sulfur battery. I. Structural change of sulfur cathode during discharge and charge. J Electrochem Soc 150(6):A796–A799

    Article  CAS  Google Scholar 

  16. Ryu HS, Ahn HJ, Kim KW, Ahn JH, Lee JY (2006) Discharge process of Li/PVdF/S cells at room temperature. J Power Sources 153(2):360–364

    Article  CAS  Google Scholar 

  17. Ryu HS, Ahn HJ, Kim KW, Ahn JH, Lee JY, Cairns EJ (2005) Self-discharge of lithium–sulfur cells using stainless-steel current-collectors. J Power Sources 140(2):365–369

    Article  CAS  Google Scholar 

  18. Jin B, Kim JU, Gu HB (2003) Electrochemical properties of lithium–sulfur batteries. J Power Sources 117(1–2):148–152

    Article  CAS  Google Scholar 

  19. Trofimov BA, Markova MV, Morozova LV, Prozorova GF, Korzhova SA, Cho MD, Annenkov VV, Mikhaleva AI (2011) Protected bis(hydroxyorganyl) polysulfides as modifiers of Li/S battery electrolyte. Electrochim Acta 56(5):2458–2463

    Article  CAS  Google Scholar 

  20. Choi JW, Kim JK, Cheruvally G, Ahn JH, Ahn HJ, Kim KW (2007) Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes. Electrochim Acta 52(5):2075–2082

    Article  CAS  Google Scholar 

  21. Gao J, Lowe MA, Kiya Y, Abruna HD (2011) Effects of liquid electrolytes on the charge–discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies. J Phys Chem C 115(50):25132–25137

    Article  CAS  Google Scholar 

  22. Aurbach D, Pollak E, Elazari R, Salitra G, Kelley CS, Affinito J (2009) On the surface chemical aspects of very high energy density, rechargeable Li–sulfur batteries. J Electrochem Soc 156(8):A694–A702

    Article  CAS  Google Scholar 

  23. Rauh RD, Abraham KM, Pearson GF, Surprenant JK, Brummer SB (1979) Lithium-dissolved sulfur battery with an organic electrolyte. J Electrochem Soc 126(4):523–527

    Article  CAS  Google Scholar 

  24. Peled E, Gorenshtein A, Segal M, Sternberg Y (1989) Rechargeable lithium–sulfur battery. J Power Sources 26(3–4):269–271

    Article  CAS  Google Scholar 

  25. Peled E, Sternberg Y, Gorenshtein A, Lavi Y (1989) Lithium–sulfur battery—evaluation of dioxolane-based electrolytes. J Electrochem Soc 136(6):1621–1625

    Article  CAS  Google Scholar 

  26. Wang HL, Yang Y, Liang YY, Robinson JT, Li YG, Jackson A, Cui Y, Dai HJ (2011) Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11(7):2644–2647

    Article  CAS  Google Scholar 

  27. Hassoun J, Scrosati B (2010) Moving to a solid-state configuration: a valid approach to making lithium–sulfur batteries viable for practical applications. Adv Mater 22(45):5198–5201

    Article  CAS  Google Scholar 

  28. Aurbach D (2000) Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J Power Sources 89(2):206–218

    Article  CAS  Google Scholar 

  29. Choi JW, Cheruvally G, Kim DS, Ahn JH, Kim KW, Ahn HJ (2008) Rechargeable lithium/sulfur battery with liquid electrolytes containing toluene as additive. J Power Sources 183(1):441–445

    Article  CAS  Google Scholar 

  30. Zhu XJ, Wen ZY, Gu ZH, Lin ZX (2005) Electrochemical characterization and performance improvement of lithium/sulfur polymer batteries. J Power Sources 139(1–2):269–273

    Article  CAS  Google Scholar 

  31. Aurbach D, Gofer Y, Benzion M, Aped P (1992) The behavior of lithium electrodes in propylene and ethylene carbonate—the major factors that influence Li cycling efficiency. J Electroanal Chem 339(1–2):451–471

    CAS  Google Scholar 

  32. Liang X, Wen ZY, Liu Y, Wu MF, Jin J, Zhang H, Wu XW (2011) Improved cycling performances of lithium–sulfur batteries with LiNO3-modified electrolyte. J Power Sources 196(22):9839–9843

    Article  CAS  Google Scholar 

  33. Balbuena PB, Wang Y (2004) Lithium-ion batteries: solid-electrolyte interphase. Imperial College press, London

    Book  Google Scholar 

Download references

Acknowledgments

This work was funded by “The Development of the Next Generation Lithium Metal Battery for the Full EV Project” of the Ministry of Knowledge Economy of Korea and partly by the National Research Foundation of Korea, grant funded by the Korean Government (MEST) (2011-0027954, NRF-2012-M1A2A2-029543)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyung Sun Kim or Yong-Tae Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.S., Jeong, TG., Choi, NS. et al. The cycling performances of lithium–sulfur batteries in TEGDME/DOL containing LiNO3 additive. Ionics 19, 1795–1802 (2013). https://doi.org/10.1007/s11581-013-0943-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-0943-9

Keywords

Navigation