Skip to main content
Log in

Novel electrospun PAN–PVC composite fibrous membranes as polymer electrolytes for polymer lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Composite fibrous membranes based on poly(acrylonitrile)(PAN)-poly(vinyl chloride)(PVC) have been prepared by electrospinning. The fibrous membranes are made up of fibers of 850- to 1,300-nm diameters. These fibers are stacked in layers to produce a fully interconnected pore structure. Polymer electrolytes were prepared by immersing the fibrous membranes in 1 M LiClO4-PC solution for 60 min. The condition of pure PAN polymer electrolytes is jelly, which has poor mechanical performance and cannot be used. But when PVC with a good mechanical stiffener was added to PAN, the condition of composite PAN–PVC polymer electrolytes becomes free-standing. In addition, the optimum electrochemical properties have been observed for the polymer electrolyte based on PAN–PVC (8:2, w/w) to show ionic conductivity of 1.05 × 10−3 S cm−1 at 25 °C, anodic stability up to 4.9 V versus Li/Li+, and a good compatibility with lithium metal resulting in low interfacial resistance. The promising results showed that fibrous PEs based on PAN–PVC (8:2, w/w) have good mechanical stability and electrochemical properties. This shows a great potential application in polymer lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tarascon JM, Armand M (2001) Nature 414:359–367

    Article  CAS  Google Scholar 

  2. Noto VD, Lavina S, Giffin GA, Negro E, Scrosati B (2011) Electrochim Acta 57:4–13

    Article  Google Scholar 

  3. Rajendran S, Mahendran O, Kannan R (2002) Fuel 81:1077–1081

    Article  CAS  Google Scholar 

  4. Ahmad Z, Al-Awadi NA, Al-Sagheer F (2007) Polym Degrad Stabil 92:1025–1033

    Article  CAS  Google Scholar 

  5. Tsutsumi H, Matsuo A, Takase K, Doi S, Hisanaga A, Onimura K, Oishi T (2000) J Power Sources 90:33–38

    Article  CAS  Google Scholar 

  6. Gopalan AI, Santhosh P, Manesh KM, Nho JH, Kim SH, Hwang CG, Lee KP (2008) J Membr Sci 325:683–690

    Article  CAS  Google Scholar 

  7. Abraham KM, Alamgir M (1990) J Electrochem Soc 137:1657–1658

    Article  CAS  Google Scholar 

  8. Huq R, Koksbang R, Tonder PE, Farrington GC (1992) Electrochim Acta 37:1681–1684

    Article  CAS  Google Scholar 

  9. Rajendran S, Babu R, Sivakumar P (2009) J Appl Polym Sci 113:1651–1656

    Article  CAS  Google Scholar 

  10. Rajendran S, Babu R, Sivakumar P (2008) Ionics 14:149–155

    Article  CAS  Google Scholar 

  11. Yee WA, Nguyen AC, Lee PS, Kotaki M, Liu Y, Tan BT, Mhaisalkar S, Lu XH (2008) Polymer 49:4196–4203

    Article  CAS  Google Scholar 

  12. Li X, Cheruvally G, Kim JK, Choi JW, Ahn JH, Kim KW, Ahn HJ (2007) J Power Sources 167:491–498

    Article  CAS  Google Scholar 

  13. Bansal D, Meyer B, Salomon M (2008) J Power Sources 178:848–851

    Article  CAS  Google Scholar 

  14. Rajendran S, Babu RS, Sivakumar P (2007) J Power Sources 170:460–464

    Article  CAS  Google Scholar 

  15. Rajendran S, Babu RS, Sivakumar P (2008) J Membr Sci 315:67–73

    Article  CAS  Google Scholar 

  16. Ramesh S, Ng HM (2011) Solid State Ion 192:2–5

    Article  CAS  Google Scholar 

  17. Wu N, Cao Q, Wang XY, Li XY, Deng HY (2011) J Power Sources 196:8638–8643

    Article  CAS  Google Scholar 

  18. Cheruvally G, Kim JK, Choi JW, Ahn JH, Shin YJ, Manuel J, Raghavan P, Kim KW, Ahn HJ, Choi DS, Song CE (2007) J Power Sources 172:863–869

    Article  CAS  Google Scholar 

  19. Bansal D, Meyer B, Salomon M (2008) J Power Sources 178:848–851

    Article  CAS  Google Scholar 

  20. Kim JK, Manuel J, Chauhan GS, Ahn JH, Ryu HS (2010) Electrochim Acta 55:1366–1372

    Article  CAS  Google Scholar 

  21. Yee WA, Nguyen AC, Lee PS, Kotaki M, Liu Y, Tan BT, Mhaisalkar S, Lu XH (2008) Polymer 49:4196–4203

    Article  CAS  Google Scholar 

  22. Raghavan P, Zhao XH, Kim JK, Manuel J, Chauhan GS, Ahn JH, Nah C (2008) Electrochim Acta 54:228–234

    Article  CAS  Google Scholar 

  23. Xiao QZ, Li ZH, Gao DS, Zhang HL (2009) J Membr Sci 326:260–264

    Article  CAS  Google Scholar 

  24. Zhong Z, Cao Q, Jing B, Wang XY, Li XY, Deng HY (2012) Mater Sci Eng B 177:86–91

    Article  CAS  Google Scholar 

  25. Raghavan P, Zhao XH, Shin C, Baek DH, Choi JW, Manuel J, Heo MY, Ahn JH, Nah C (2010) J Power Sources 195:6088–6094

    Article  CAS  Google Scholar 

  26. Kim JR, Choi SW, Jo SM, Lee WS, Kim BC (2004) Electrochim Acta 50:69–75

    Article  CAS  Google Scholar 

  27. Cao JH, Zhu BK, Xu YY (2006) J Membr Sci 266:446–453

    Article  Google Scholar 

  28. Cui ZY, Xu YY, Zhu LP, Wang JY, Xi ZY, Zhu BK (2008) J Membr Sci 325:957–963

    Article  CAS  Google Scholar 

  29. Jiang YX, Chen ZF, Zhuang QC, Xu JM, Dong QF, Huang L, Sun SG (2006) J Power Sources 160:1320–1328

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the Youth Project of National Nature Science Foundation of China (Grant No. 51103124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, Z., Cao, Q., Jing, B. et al. Novel electrospun PAN–PVC composite fibrous membranes as polymer electrolytes for polymer lithium-ion batteries. Ionics 18, 853–859 (2012). https://doi.org/10.1007/s11581-012-0682-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-012-0682-3

Keywords

Navigation