Skip to main content
Log in

Effect of LiBOB as additive on electrochemical properties of lithium–sulfur batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The effect of varying amounts (in the range 1–10 wt.%) of LiBOB (lithium bis(oxalato) borate) as additive in mixed liquid electrolyte on the electrochemical performance of lithium–sulfur batteries is investigated at room temperature. The electrochemical impedance spectroscopy (EIS) of lithium anode with LiBOB has two semicircles, corresponding to charge transfer impedance and ion migration impedance, respectively. The lithium anode with LiBOB shows a higher ion migration impedance, which could reduce the ionic diffusion rate in the anode. Scanning electron microscopy (SEM) observations shows that lithium anode with LiBOB has a smoother and denser surface morphology than the anode without LiBOB. The lithium–sulfur batteries with LiBOB shows the improvement of both the discharge capacity and cycle performance, a maximum discharge capacity of 1,191 mA h g−1 is obtained with 4 wt.% LiBOB. The lithium–sulfur batteries with 4 wt.% LiBOB can maintain a reversible capacity of 756 mA h g−1 after 50 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Nature 451:652

    Article  CAS  Google Scholar 

  2. Yamin H, Gorenshtein A, Penciner J, Sternberg Y, Peled E (1988) J Electrochem Soc 135:1045

    Article  CAS  Google Scholar 

  3. Kolosnitsyn VS, Karaseva EV, Seung DY, Cho MD (2003) Russ J Electrochem 39:1218

    Article  Google Scholar 

  4. He X, Ren J, Wang L, Pu W, Wan C, Jiang C (2009) Ionics 15:477

    Article  CAS  Google Scholar 

  5. Ji X, Lee KT, Nazar LF (2009) Nat Mater 2460:500

    Article  Google Scholar 

  6. Elazari R, Salitra G, Talyosef Y, Grinblat J, Kelley CS, Xiao A, Affinito J, Aurbach D (2010) J Electrochem Soc 157:A1131

    Article  CAS  Google Scholar 

  7. Cheon SE, Choi SS, Han JS, Choi YS, Jung BH, Lima HS (2004) J Electrochem Soc 151:A2067

    Article  CAS  Google Scholar 

  8. Choi JW, Kim JK, Cheruvally G, Ahna JH, Ahnb HJ, Kimb KW (2007) Electrochim Acta 52:2075

    Article  CAS  Google Scholar 

  9. Lee YM, Choi NS, Park JH, Park JK (2003) J Power Sources 119:964

    Article  Google Scholar 

  10. Shin JH, Cairns EJ (2008) J Electrochem Soc 155:A368

    Article  CAS  Google Scholar 

  11. Wang Y, Huang Y, Huang C, Wang W, Yu Z, Zhang H, Wang A, Yuan K (2009) J Appl Electrochem 40:321

    Article  Google Scholar 

  12. Yuan LX, Feng JK, Ai XP, Cao YL, Chen SL, Yang HX (2006) Electrochem Commun 8:610

    Article  CAS  Google Scholar 

  13. Wang J, Chew SY, Zhao ZW, Ashraf S, Wexler D, Chen J, Ng SH, Chou SL, Liu HK (2008) Carbon 46:229

    Article  CAS  Google Scholar 

  14. Liang C, Dudney NJ, Howe JY (2009) Chem Mater 21:4724

    Article  CAS  Google Scholar 

  15. Pu W, He X, Wang L, Tian X, Jiang C, Wan C (2007) Ionics 13:273

    Article  CAS  Google Scholar 

  16. Wang L, He X, Ren J, Pu W, Li J, Gao J (2010) Ionics 16:689

    Article  CAS  Google Scholar 

  17. Mikhaylik YV (2005) US Pat 0,147,891

  18. Mikhaylik YV (2008) US Pat 7,354,680

  19. Akridge JR, Mikhaylik YV, White N (2004) Solid State Ionics 175:243

    Article  CAS  Google Scholar 

  20. Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U (2002) Electrochim Acta 47:1423

    Article  CAS  Google Scholar 

  21. Aurbach D, Pollak E, Elazari R, Salitra G, Kelley CS, Affinitob J (2009) J Electrochem Soc 156:A694

    Article  CAS  Google Scholar 

  22. Xu K, Zhang SS, Lee U, Allen JL, Jow TR (2005) J Power Sources 146:79

    Article  CAS  Google Scholar 

  23. Xu K, Zhang S, Jow R (2005) J Power Sources 143:197

    Article  CAS  Google Scholar 

  24. Täubert C, Fleischhammer M, Wohlfahrt-Mehrens M, Wietelmann U, Buhrmesterb T (2010) J Electrochem Soc 157:A721

    Article  Google Scholar 

  25. Kaneko H, Sekine K, Takamura T (2005) J Power Sources 146:142

    Article  CAS  Google Scholar 

  26. Xu K, Zhang S, Jow TR (2003) Electrochem Solid-State Lett 6:A117

    Article  CAS  Google Scholar 

  27. Takami N, Ohsaki T, Inada K (1992) J Electrochem Soc 139:1849

    Article  CAS  Google Scholar 

  28. Chen Z, Lu WQ, Liu K, Amine K (2006) Electrochim Acta 51:3322

    Article  CAS  Google Scholar 

  29. Cheon SE, Ko KS, Cho JH, Kim SW, Chin EY (2003) J Electrochem Soc 150:A796

    Article  CAS  Google Scholar 

  30. Mikhaylik YV, Akridge JR (2004) J Electrochem Soc 151:A1969

    Article  CAS  Google Scholar 

  31. Cheon SE, Ko KS, Cho JH, Kim SW, Chin EY (2003) J Electrochem Soc 150:A800

    Article  CAS  Google Scholar 

  32. López CM, Vaughey JT, Dees DE (2009) J Electrochem Soc 156:A726

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shizhao Xiong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, S., Kai, X., Hong, X. et al. Effect of LiBOB as additive on electrochemical properties of lithium–sulfur batteries. Ionics 18, 249–254 (2012). https://doi.org/10.1007/s11581-011-0628-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-011-0628-1

Keywords

Navigation