Skip to main content

Advertisement

Log in

Conversion reactions: a new pathway to realise energy in lithium-ion battery—review

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Rechargeable lithium-ion batteries of today operate by an electrochemical process that involves intercalation reactions that warrants the use of electrode materials having very specific structures and properties. Further, they are limited to the insertion of one Li per 3D metal. One way to circumvent this intrinsic limitation and achieve higher capacities would be the use of electrode materials in which the metal-redox oxidation state could reversibly change by more than one unit. Through the discovery of conversion or displacement reactions, it is possible to reversibly change by more than one unit. Further, the need for materials with open structures or good electronic ionic conductivity is eliminated, thus leading to a new area in materials for lithium ion battery. In this paper, we present a review enlightens new reaction schemes and their potential impact on applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Idota Y, Maekawa TKA, Miyasaka T (1997) Science 276:1395

    Article  CAS  Google Scholar 

  2. Tarascon J-M, Armand M (2001) Nature 414(6861):359

    Article  CAS  Google Scholar 

  3. Leroux F, Power GROWP, Nazar LF (1998) Electrochem Solid State Lett 1(6):255

    Article  CAS  Google Scholar 

  4. Hu J, Li H, Huang X (2005) Electrochem Solid State Lett 8:A66

    Article  CAS  Google Scholar 

  5. Pralong V, Leriche J-B, Beaudoin B, Naudin E, Morcrette M, Tarascon J-M (2004) Solid State Ion 166(3):295

    Article  CAS  Google Scholar 

  6. D’ebart A, Dupont L, Poizot P, Leriche J-B, Tarascon J-M (2001) J Electrochem Soc 148:A1266

    Article  Google Scholar 

  7. Dupont L, Grugeon S, Laruelle S, Tarascon J-M (2007) J Power Sources 164(2):839–848

    Article  CAS  Google Scholar 

  8. Taberna PL, Mitra S, Poizot P, Simon P, Tarascon J-M (2006) Nat Mater 5:567–573

    Article  CAS  Google Scholar 

  9. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J-M (2000) Nature 407:496

    Article  CAS  Google Scholar 

  10. Li W-Y, Xu L-N, Chen J (2005) Adv Funct Mater 15:851–857

    Article  CAS  Google Scholar 

  11. Wang Y, Yang C-M, Schmidt W, Spliethoff B, Bill E, Schuth F (2005) Adv Mater 17:53–56

    Article  CAS  Google Scholar 

  12. Kleitz F, Choi SH, Ryoo R (2003) Chem Commun 17:2136–2137

    Article  Google Scholar 

  13. Tian BZ, Liu XY, Solovyov LA, Liu Z, Yang HF, Zhang ZD, Xie SH, Zhang FQ, Tu B, Yu CZ, Terasaki O, Zhao DY (2004) J Am Chem Soc 126:865–875

    Article  CAS  Google Scholar 

  14. Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552

    Article  CAS  Google Scholar 

  15. Jiao F, Shaju KM, Bruce PG (2005) Angew Chem Int Ed 44:6550–6553

    Article  CAS  Google Scholar 

  16. Larcher D, Sudant G, Leriche J-B, Chabre Y, Tarascon J-M (2002) J Electrochem Soc 149(3):A234–A241

    Article  CAS  Google Scholar 

  17. Thackeray MM, Backer SD, Adendorff KT (1985) Solid State Ion 17:175

    Article  CAS  Google Scholar 

  18. Laruelle S, Grugeon S, Poizot P, Dolle M, Dupont L, Tarascon J-M (2002) J Electrochem Soc 149:A627–A634

    Article  CAS  Google Scholar 

  19. Yuan Z, Huang F, Feng C, Sun J, Zhou Y (2003) Mater Chem Phys 79:1–4

    Article  CAS  Google Scholar 

  20. Shaju KM, Jiao F, De’bart A, Bruce PG (2007) Phys Chem Chem Phys 9(15):1837–1842

    Article  CAS  Google Scholar 

  21. Jiao F, Bao J, Bruce PG (2007) Electrochem Solid State Lett 10(12):A264–A266

    Article  CAS  Google Scholar 

  22. Balaya P, Li H, Kienle L, Maier J (2003) Adv Funct Mater 13:621

    Article  CAS  Google Scholar 

  23. Maier J (2005) Nat Mater 4:805

    Article  Google Scholar 

  24. Balaya P, Li H, Kienle L, Maier J (2003) Adv Funct Mater 13(8):621–625

    Article  CAS  Google Scholar 

  25. Dupont L, Laruelle S, Grugeon S, Dickinson C, Zhoub W, Tarascon J-M (2008) J Power Sources 175:502–509

    Article  CAS  Google Scholar 

  26. Grugeon S, Laruelle S, Dupont L, Chevallier F, Taberna PL, Simon P, Gireaud L, Lascaud S, Vidal E, Yrieix B, Tarascon J-M (2005) Chem Mater 17(20):5041–5047

    Article  CAS  Google Scholar 

  27. Badway F, Cosandey F, Pereira N, Amatucci GG (2003) J Electrochem Soc 150(10):A1318–A1327

    Article  CAS  Google Scholar 

  28. Li H, Richter G, Maier J (2003) Adv Mater 9:15

    Article  Google Scholar 

  29. Zhou Y, Liu W, Xue M, Yu L, Wu C, Wu X, Fu Z (2006) Electrochem Solid State Lett 9(3):A147–A150

    Article  CAS  Google Scholar 

  30. Nishijima M, Takeda Y, Imanishi N, Yamamoto O (1994) J Solid State Chem 113:205

    Article  CAS  Google Scholar 

  31. Nishijima M, Tadokoro N, Takeda Y, Imanishi N, Yamamoto O (1994) J Electrochem Soc 141:2966

    Article  CAS  Google Scholar 

  32. Nishijima M, Kagohashi T, Imanishi N, Takeda Y, Yamamoto O, Kondo S (1996) Solid State Ion 83:107

    Article  CAS  Google Scholar 

  33. Shodai T, Okada S, Tobishima S, Yamaki J (1996) Solid State Ion 86–88:785

    Article  Google Scholar 

  34. Shodai T, Okada S, Tobishima S, Yamaki J (1997) J Power Sources 68:515

    Article  CAS  Google Scholar 

  35. Takeda Y, Nishijima M, Yamahata M, Takeda K, Imanishi N, Yamamoto O (2000) Solid State Ion 130:61

    Article  CAS  Google Scholar 

  36. Bates JB, Dudney NJ, Neudecker B, Ueda A, Evans CD (2000) Solid State Ion 135:33

    Article  CAS  Google Scholar 

  37. Neudecker BJ, Zuhr RA, Bates JB (1999) J Power Sources 81–82:27

    Article  Google Scholar 

  38. Neudecker BJ, Zuhr RA (2000) In: Nazri G-A, Thockeray M, Ohzuku T (eds) Intercalation compounds for battery materials PV 99–24. The Electrochemical Society Proceedings Series, Pennington, NJ, p 295

    Google Scholar 

  39. Boukamp BA, Huggins RA (1978) Mater Res Bull 13:23

    Article  CAS  Google Scholar 

  40. Rea JR, Foster DL (1979) Mater Res Bull 14:841

    Article  CAS  Google Scholar 

  41. Rabenau A (1982) Solid State Ion 6:277

    Article  CAS  Google Scholar 

  42. Lapp T, Skaarup S (1983) Solid State Ion 11:97

    Article  CAS  Google Scholar 

  43. Richard PM (1980) J Solid State Chem 33:127

    Article  Google Scholar 

  44. Pereira N, Klein LC, Amatucci GG (2002) J Electrochem Soc 149(3):A262–A271

    Article  CAS  Google Scholar 

  45. Pereira N, Dupont L, Tarascon JM, Klein CLC, Amatucci GG (2003) J Electrochem Soc 150(9):A1273–A1280

    Article  CAS  Google Scholar 

  46. SAFT (1966) French Patent 1(490):725

    Google Scholar 

  47. Gabano JP, Dechenaux V, Gerbier G, Jammet J (1972) J Electrochem Soc 114:459

    Article  Google Scholar 

  48. Jasinski R, Burrows B (1969) J Electrochem Soc 116:422

    Article  CAS  Google Scholar 

  49. Linden D (1995) Handbook of batteries. McGraw-Hill, New York

    Google Scholar 

  50. Armand M (1973) In: Van Goll W (ed) New electrode materials in fast ion transport in solids. North Holland, Amsterdam

    Google Scholar 

  51. Steele BCH (1973) In: Van Goll W (ed) Chemical diffusion in fast ion transport in solids. North Holland, Amsterdam

    Google Scholar 

  52. Dupont DL, Patrice R, Tarascon J-M (2006) Solid State Sci 8:640–651

    Article  Google Scholar 

  53. Villevieille C, Ionica-Bousquet C-M, Ducourant B, Jumas J-C, Monconduit L (2007) J Power Sources 172:388–394

    Article  CAS  Google Scholar 

  54. Ionica CM, Lippens PE, Fourcade JO, Jumas J-C (2005) J Power Sources 146:478–481

    Article  CAS  Google Scholar 

  55. Tarascon J-M, Morcrette M, Dupont L, Chabre Y, Payen C, Larcher D, Pralonga V (2003) J Electrochem Soc 150(6):A732–A741

    Article  CAS  Google Scholar 

  56. Larcher D, Prakash AS, Laffont L, Womes M, Jumas JC, Olivier-Fourcade J, Hedge MS, Tarascon J-M (2006) J Electrochem Soc 153(9):A1778–A1787

    Article  CAS  Google Scholar 

  57. Nishijima M, Kagohashi T, Imanishi M, Takeda Y, Yamamoto O, Kondo S (1996) Solid State Ion 83:107

    Article  CAS  Google Scholar 

  58. Shodai T, Okada S, Tobishima S, Yamaki J (1996) J Solid State Ion 86–88:785

    Article  Google Scholar 

  59. Takeda Y, Nishijima M, Yamahata M, Takeda K, Imanishi N, Yamamoto O (2000) Solid State Ion 130:61

    Article  CAS  Google Scholar 

  60. Alcantara R, Fernandez-Madrigal FJ, Lavela P, Tirado JL, Jumas J-C, Olivier-Fourcade J (1999) J Mater Chem 9:2517

    Article  CAS  Google Scholar 

  61. Lefebvre-Devos M, Lassalle M, Wallart X, Olivier-Fourcade J, Monconduit L, Jumas J-C (2001) Phys Rev B 63:125110

    Article  Google Scholar 

  62. Monconduit L, Tillard-Charbonnel M, Belin C (2001) J Solid State Chem 156:37

    Article  CAS  Google Scholar 

  63. Pralong V, Souza DCS, Leung KT, Nazar LF (2002) Electrochem Commun 4:516–520

    Article  CAS  Google Scholar 

  64. Gillot F, Boyanov S, Dupont L, Doublet M-L, Morcrette M, Monconduit L, Tarascon J-M (2005) Chem Mater 17:6327–6337

    Article  CAS  Google Scholar 

  65. Gillot F, M’en’etrier M, Bekaert E, Dupont L, Morcrette M, Monconduit L, Tarascon JM (2007) J Power Sources 172:877–885

    Article  CAS  Google Scholar 

  66. Bichat M-P, Pascal J-L, Gillot F, Favier F (2005) Chem Mater 17:6761–6771

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ganesan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malini, R., Uma, U., Sheela, T. et al. Conversion reactions: a new pathway to realise energy in lithium-ion battery—review. Ionics 15, 301–307 (2009). https://doi.org/10.1007/s11581-008-0236-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-008-0236-x

Keywords

Navigation