Skip to main content
Log in

Pareto optimal allocations and optimal risk sharing for quasiconvex risk measures

  • Published:
Mathematics and Financial Economics Aims and scope Submit manuscript

Abstract

The main goal of this paper is to generalize the characterization of Pareto optimal allocations known for convex risk measures (see, among others, Jouini et al., in Math Financ 18(2):269–292, 2008 and Filipovic and Kupper, in Int J Theor Appl Financ, 11:325–343, 2008) to the wider class of quasiconvex risk measures. Following the approach of Jouini et al., in Math Financ 18(2):269–292, 2008 for convex risk measures, in the quasiconvex case we provide sufficient conditions for allocations to be (weakly) Pareto optimal in terms of exactness of the so-called quasiconvex inf-convolution as well as an existence result for weakly Pareto optimal allocations. Moreover, we give a necessary condition for weakly optimal risk sharing that is also sufficient under cash-additivity of at least one between the risk measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. \(\pi \) is said to be Lipschitz on the strict lower level set \(\{\pi < \pi (\xi ) \}\) if there exists \(c>0\) such that \(\vert \pi (X)-\pi (Y) \vert \le c \Vert X-Y \Vert _{\infty }\) for any \(X,Y \in L^{\infty }\) such that \(\pi (X), \pi (Y) < \pi (\xi )\). Roughly speaking, this means that \(\pi \) is \(\Vert \cdot \Vert _{\infty }\)-continuous on the strict lower level set.

References

  1. Acciaio, B.: Optimal risk sharing with non-monotone monetary functionals. Financ. Stoch. 11, 267–289 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barrieu, P., El Karoui, N.: Inf-convolution of risk measures and optimal risk transfer. Financ. Stoch. 9, 269–298 (2005)

    Article  MATH  Google Scholar 

  3. Barrieu, P., El Karoui, N.: Pricing, hedging and optimally designing derivatives via minimization of risk measures. In: Carmona, R. (ed.) Indifference Pricing, pp. 77–144. Princeton University Press, Princeton (2005)

    Google Scholar 

  4. Borch, Z.: Equilibrium in a reinsurance market. Econometrica 30, 424–444 (1962)

    Article  MATH  Google Scholar 

  5. Bühlmann, H., Jewell, S.: Optimal risk exchanges. Astin Bull. 10, 243–262 (1979)

    Google Scholar 

  6. Cerreia-Vioglio, S., Maccheroni, F., Marinacci, M., Montrucchio, L.: Risk measures: rationality and diversification. Math. Financ. 21(4), 743–774 (2011)

    MATH  MathSciNet  Google Scholar 

  7. Chateauneuf, A., Dana, R.-A., Tallon, J.-M.: Optimal risk-sharing rules and equilibria with Choquet-expected-utility. J. Math. Econ. 34, 191–214 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Delbaen, F.: Coherent risk measures on general probability spaces. In: Sandmann, K., Schönbucher, P.J. (eds.) Advances in Finance and Stochastics, pp. 1–37. Springer-Verlag, New York (2002)

    Chapter  Google Scholar 

  9. Deprez, O., Gerber, H.U.: On convex principles of premium calculation. Insurance 4, 179–189 (1985)

    MATH  MathSciNet  Google Scholar 

  10. Drapeau, S., Kupper, M.: Risk preferences and their robust representation. Math. Oper. Res. 38, 28–62 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Elqortobi, A.: Inf-convolution quasi-convexe des fonctionnelles positives. Oper. Res. 26(4), 301–311 (1992)

    MATH  MathSciNet  Google Scholar 

  12. Filipovic, D., Kupper, M.: Equilibrium prices for monetary utility functions. Int. J. Theor. Appl. Financ. 11, 325–343 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Föllmer, H., Schied, A.: Convex measures of risk and trading constraints. Financ. Stoch. 6, 429–447 (2002a)

    Article  MATH  Google Scholar 

  14. Frittelli, M., Maggis, M.: Dual representation of quasiconvex conditional maps. SIAM J. Financ. Math. 2, 357–382 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Frittelli, M., Rosazza Gianin, E.: Putting order in risk measures. J. Bank. Financ. 26, 1473–1486 (2002)

    Article  Google Scholar 

  16. Jouini, E., Schachermayer, W., Touzi, N.: Optimal risk sharing for law invariant monetary utility functions. Math. Financ. 18(2), 269–292 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Klöppel, S., Schweizer, M.: Dynamic utility indifference valuation via convex risk measures. Math. Financ. 17(4), 599–627 (2007)

    Article  MATH  Google Scholar 

  18. Luc, D.T., Volle, M.: Level sets, infimal convolution and level addition. J. Optim. Theory Appl. 94(3), 695–714 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Moreau, J.J.: Inf-convolution, sous-additivité, convexité des fonctions numériques. J. Math. Pures Et Appl. 49, 109–154 (1970)

    MATH  MathSciNet  Google Scholar 

  20. Penot, J.-P.: Characterization of solution sets of quasiconvex programs. J. Optim. Theory Appl. 117(3), 627–636 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Penot, J.-P.: Are generalized derivatives useful for generalized convex functions? In: Crouzeix, J.-P., et al. (eds.) Generalized Convexity, Generalized Monotonicity: Recent Results, pp. 3–59. Kluwer, Dordrecht (1998)

    Chapter  Google Scholar 

  22. Penot, J.-P., Volle, M.: On quasiconvex duality. Math. Oper. Res. 15, 597–625 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. Penot, J.-P., Zalinescu, C.: Elements of quasiconvex subdifferential calculus. J. Convex Anal. 7(2), 243–269 (2000)

    MATH  MathSciNet  Google Scholar 

  24. Ravanelli, C., Svindland, G.: Comonotone Pareto optimal allocations for law invariant robust utilities on \(L^1\). Financ. Stoch. 18, 249–269 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  25. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  26. Seeger, A., Volle, M.: On a convolution operation obtained by adding level sets: classical and new results. Oper. Res. 29(2), 131–154 (1995)

    MATH  MathSciNet  Google Scholar 

  27. Volle, M.: Duality for the level sum of quasiconvex functions and applications. Control Optim. Calc. Var. 3, 329–343 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the anonymous referee for the valuable suggestions that have contributed to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuela Rosazza Gianin.

Appendix

Appendix

In the following, we recall some basic definitions and results on different notions of subdifferentiability for quasiconvex functions. We refer to Penot [21] and to Penot and Zalinescu [23] for a deep and wide treatment.

Definition 17

(see Penot [21], Penot and Zalinescu [23]) Let \(\mathcal {X}\) be a locally convex topological vector space and \(\mathcal {X}^*\) be its topological dual space. Let \(f: \mathcal {X}\, \rightarrow \, \overline{\mathbb {R}}\) be a quasiconvex function and let \(x_0 \in \mathcal {X}\) be such that \(f(x_0)\) is finite.

The Greenberg-Pierskalla subdifferential \(\partial ^{GP} f(x_0)\), the star subdifferential \(\partial ^{(*)} f(x_0)\) and the lower subdifferential of Plastria \(\partial ^< f(x_0)\) of \(f\) at \(x_0 \in \mathcal {X}\) are defined, respectively, as

$$\begin{aligned}&\partial ^{GP} f(x_0) \triangleq \left\{ x^* \in \mathcal {X}^*: \langle x^* , x-x_0\rangle <0 \ \text{ for } \text{ any } \ x \in \{f<f(x_0)\} \right\} \\&\partial ^{(*)} f(x_0) \triangleq \left\{ x^* \in \mathcal {X}^*: \langle x^* , x-x_0\rangle \le 0 \ \text{ for } \text{ any } x \in \{f<f(x_0)\}\right\} \\&\partial ^< f(x_0)\triangleq \{x^*\in \mathcal {X}^*: \langle x^*, x-x_0\rangle \le f(x)-f(x_0) \ \text{ for } \text{ any } x\in \{f <f(x_0)\} \}. \end{aligned}$$

Notice that the last definition is similar but weaker than the one of Fenchel-Moreau subdifferential. Other relations among the different notions above can be found in Penot [21] and Penot and Zalinescu [23], among others.

Proposition 18

(see Prop. 2.8 of Penot and Zalinescu [23]) Let \(f: \mathcal {X}\rightarrow \mathbb R\) and \(g: \mathcal {X}\rightarrow \mathbb R\) be two given functions and let \(z_0 \in \mathcal {X}\). If the qco-convolution \((f \nabla g) (z_0)\) is exact with \((f\nabla g)(z_0) = f(x_0) \vee g(y_0)\) for \(x_0, y_0 \in \mathcal {X}\) such that \(x_0+y_0=z_0\) and \(f(x_0)=g(y_0)\), then

$$\begin{aligned} (\partial ^{(*)} f(x_0) \cap \partial ^{GP}g(y_0)) \cup (\partial ^{GP} f(x_0) \cap \partial ^{(*)}g(y_0)) \subseteq \partial ^{GP}\left( f\nabla g \right) (z_0), \end{aligned}$$
(33)

where equality holds if \(x_0,y_0\) are not local minimizers of \(f,g\), respectively.

Given two functionals \(f,g: \mathcal {X}\rightarrow \bar{\mathbb {R}}\), given \(x_0,y_0\in \mathcal {X}\) and the subdifferentials \(\partial ^< f(x_0)\) and \(\partial ^< g(y_0)\), the set \((\partial ^< f(x_0)) \nabla (\partial ^< g(y_0))\) is defined as

$$\begin{aligned} (\partial ^< f(x_0)) \, \nabla \, (\partial ^< g(y_0))&\triangleq \left( \bigcup \limits _{\lambda \in (0,1)} [\lambda \partial ^<f(x_0) \cap (1-\lambda )\partial ^< g(y_0)] \right) \nonumber \\&\quad \cup \,(\partial ^{(*)} f(x_0) \cap \partial ^< g(y_0)) \cup ( \partial ^< f(x_0)\cap \partial ^{(*)} g(y_0)).\qquad \end{aligned}$$
(34)

See Penot and Zalinescu [23] for a general definition and for further explanations.

Proposition 19

(see Prop. 3.23 of Penot and Zalinescu [23]) Let \(f,g: \mathcal {X}\rightarrow \bar{\mathbb {R}}\) be two quasiconvex functions, \(x_0\in \mathrm{dom}f\) and \(y_0 \in \mathrm{dom}g\).

If \((\partial ^< f(x_0))\, \nabla \, (\partial ^< g(y_0))\) is nonempty and \(f(x_0)=g(y_0)\), then \((f \nabla g) (x_0+y_0)\) is exact with \((f \nabla g) (x_0+y_0) = f(x_0)\vee g(y_0) \), and \((\partial ^< f(x_0))\, \nabla \, (\partial ^< g(y_0)) \subseteq \partial ^< (f \nabla g )(x_0+y_0)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastrogiacomo, E., Rosazza Gianin, E. Pareto optimal allocations and optimal risk sharing for quasiconvex risk measures. Math Finan Econ 9, 149–167 (2015). https://doi.org/10.1007/s11579-014-0139-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11579-014-0139-8

Keywords

JEL classification

Navigation