Skip to main content
Log in

Information flow in heterogeneously interacting systems

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Motivated by studies on the dynamics of heterogeneously interacting systems in neocortical neural networks, we studied heterogeneously-coupled chaotic systems. We used information-theoretic measures to investigate directions of information flow in heterogeneously coupled Rössler systems, which we selected as a typical chaotic system. In bi-directionally coupled systems, spontaneous and irregular switchings of the phase difference between two chaotic oscillators were observed. The direction of information transmission spontaneously switched in an intermittent manner, depending on the phase difference between the two systems. When two further oscillatory inputs are added to the coupled systems, this system dynamically selects one of the two inputs by synchronizing, selection depending on the internal phase differences between the two systems. These results indicate that the effective direction of information transmission dynamically changes, induced by a switching of phase differences between the two systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aertsen AM, Gerstein GL, Habibm MK, Palm G (1989) Dynamics of neuronal firing correlation: modulation of “effective connectivity”. J Neurophysiol 61:900–917

    CAS  PubMed  Google Scholar 

  • Belykh V, Belykh I, Mosekilde E (2001) Cluster synchronization modes in an ensemble of coupled chaotic oscillators. Phys Rev E 63(3):036216

    Article  CAS  Google Scholar 

  • Engel A, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top–down processing. Nat Rev Neurosci 2:704–716

    Article  CAS  PubMed  Google Scholar 

  • Felleman D, Van Essen D (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  CAS  PubMed  Google Scholar 

  • Fraser AM, Swinney HL (1986) Independent coordinates for strange attractors from mutual information. Phys Rev A 33:1134–1140

    Article  PubMed  Google Scholar 

  • Fries P (2005) A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci 9:474–480

    Article  PubMed  Google Scholar 

  • Fujii H, Ito H, Aihara K, Ichinose N, Tsukada M (1996) Dynamical cell assembly hypothesis? Theoretical possibility of spatio-temporal coding in the cortex. Neural Netw 9:1303–1350

    Article  PubMed  Google Scholar 

  • Inoue M, Nakamoto K (1994) Dynamics of cognitive interpretations of a necker cube in a chaos neural network. Progress Theoret Phys 92:501–508

    Article  Google Scholar 

  • Kaiser A, Schreiber T (2002) Information transfer in continuous processes. Physica D Nonlinear Phenom 166:43–62

    Article  CAS  Google Scholar 

  • Kaneko K (1986) Lyapunov analysis and information flow in coupled map lattices. Physica D Nonlinear Phenom 23:436–447

    Article  Google Scholar 

  • Kaneko K, Tsuda I (2001) Complex systems: chaos and beyond: a constructive approach with applications in life sciences. Springer, Berlin

    Book  Google Scholar 

  • Klausberger T, Magill P, Márton L, Roberts J, Cobden P, Buzsáki G, Somogyi P (2003) Brain-state-and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421:844–848

    Article  CAS  PubMed  Google Scholar 

  • Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Springer, Berlin

    Book  Google Scholar 

  • Lachaux J, Rodriguez E, Le Van Quyen M, Lutz A, Martinerie J, Varela F (2000) Studying single-trials of phase synchronous activity in the brain. Int J Bifurcat Chaos 10:2429–2439

    Google Scholar 

  • Le Van Quyen M, Foucher J, Lachaux J, Rodriguez E, Lutz A, Martinerie J, Varela F (2001) Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. J Neurosci Methods 111:83–98

    Article  CAS  PubMed  Google Scholar 

  • Li X-W, Zheng Z-G (2007) Phase synchronization of coupled rossler oscillators: amplitude effect. Commun Theor Phys 47:265–269

    Article  Google Scholar 

  • Matsumoto K, Tsuda I (1985) Information theoretical approach to noisy dynamics. J Phys A Math Gen 18:3561–3566

    Article  Google Scholar 

  • Matsumoto K, Tsuda I (1987) Extended information in one-dimensional maps. Physica D Nonlinear Phenom 26:347–357

    Article  Google Scholar 

  • Matsumoto K, Tsuda I (1988) Calculation of information flow rate from mutual information. J Phys A Math Gen 21:1405–1414

    Article  Google Scholar 

  • Mizuhara H, Wang L, Kobayashi K, Yamaguchi Y (2005) Long-range EEG phase synchronization during an arithmetic task indexes a coherent cortical network simultaneously measured by fMRI. NeuroImage 27:553–563

    Article  PubMed  Google Scholar 

  • Mountcastle V (1997) The columnar organization of the neocortex. Brain 120:701

    Article  PubMed  Google Scholar 

  • Murata T, Matsui N, Miyauchi S, Kakita Y, Yanagida T (2003) Discrete stochastic process underlying perceptual rivalry. Neuroreport 14:1347–1352

    PubMed  Google Scholar 

  • Osipov GV, Hu B, Zhou C, Ivanchenko MV, Kurths J (2003) Three types of transitions to phase synchronization in coupled chaotic oscillators. Phys Rev Lett 91:024101

    Article  PubMed  Google Scholar 

  • Ouchi K, Horita T, Yamada T (2011) Characterizing the phase synchronization transition of chaotic oscillators. Phys Rev E 83:1–5

    Article  Google Scholar 

  • Paluš M, Vejmelka M (2007) Directionality of coupling from bivariate time series: how to avoid false causalities and missed connections. Phys Rev E 75:1–14

    Google Scholar 

  • Quiroga R, Arnhold J, Grassberger P (2000) Learning driver-response relationships from synchronization patterns. Phys Rev E 61:5142–5148

    Article  CAS  Google Scholar 

  • Rockland K, Pandya D (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3–20

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez E, George N, Lachaux J, Martinerie J, Renault B, Varela F (1999) Perception’s shadow: long-distance synchronization of human brain activity. Nature 397:430–433

    Article  CAS  PubMed  Google Scholar 

  • Rosenblum M, Pikovsky AS, Kurths J (1997) Phase synchronization in driven and coupled chaotic oscillators. IEEE Trans Circuits Syst I Fundam Theory Appl 44:874–881

    Article  Google Scholar 

  • Rosenblum M, Pikovsky A (2001) Detecting direction of coupling in interacting oscillators. Phys Rev E 64:45202

    Article  CAS  Google Scholar 

  • Rosenblum M, Pikovsky A, Kurths J (1996) Phase synchronization of chaotic oscillators. Phys Rev Lett 76:1804–1807

    Article  CAS  PubMed  Google Scholar 

  • Schreiber T (2000) Measuring information transfer. Phys Rev Lett 85:461–464

    Article  CAS  PubMed  Google Scholar 

  • Shaw R (1981) Strange attractors, chaotic begavior, and information flow. Zeitschrift Naturforschung Teil A 36:80

    Google Scholar 

  • Tass P, Rosenblum MG, Weule J, Kurths J, Pikovsky A, Volkmann J, Schnitzler A, Freund H-J (1998) Detection of n:m phase locking from noisy data: application to magnetoencephalography. Phys Rev Lett 81:3291–3294

    Article  CAS  Google Scholar 

  • Tsuda I (1992) Dynamic link of memory: chaotic memory map in nonequilibrium neural networks. Neural Netw 5:313–326

    Article  Google Scholar 

  • Tsuda I (2001) Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behav Brain Sci 24:793–810

    Article  CAS  PubMed  Google Scholar 

  • Varela F, Lachaux J, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239

    Article  CAS  PubMed  Google Scholar 

  • Wilmer A, de Lussanet MHE, Lappe M (2010) A method for the estimation of functional brain connectivity from time-series data. Cogn Neurodyn 4:133–149

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Womelsdorf T, Schoffelen J-M, Oostenveld R, Singer W, Desimone R, Engel AK, Fries P (2007) Modulation of neuronal interactions through neuronal synchronization. Science 316:1609–1612

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank H. Fujii for fruitful discussions. This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas “The study on the neural dynamics for understanding communication in terms of complex hetero systems (No. 4103)” (21120002) of The Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Yamaguti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamaguti, Y., Tsuda, I. & Takahashi, Y. Information flow in heterogeneously interacting systems. Cogn Neurodyn 8, 17–26 (2014). https://doi.org/10.1007/s11571-013-9259-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-013-9259-8

Keywords

Navigation