Skip to main content
Log in

Modeling opinion formation in the kinetic theory of active particles I: spontaneous trend

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

The kinetic theory of active particles is used to model the formation and evolution of opinions in a structured population. The spatial structure is modeled by a network whose nodes mimic the geographic distribution of individuals, while the functional subsystems present in each node group together elements sharing a common orientation. In this paper we introduce a model, based on nonlinear and nonlinearly additive interactions among individuals, subsystems and nodes, related to the spontaneous evolution of opinion concerning given specific issues. Numerical solutions in a model situation not related with real data show how the mutual interactions are able to drive the subsystems opinion toward the emergence of collective structures characterizing this kind of complex systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Since it depends on more than 2 indexes, it is actually an array rather than a matrix.

  2. We recall that in this framework we label the subsystems and the nodes with integers. A possible alternative in the definition of the center of mass would consist in using the number of individuals \(n_{ij}(t)=\int _0^1f_{ij}(t,u)du\) in place of the distribution functions. In the context of opinion formation seems more reasonable keeping the definition (10).

  3. The center of mass does depend on the values of the functions appearing at the r.h.s. of (10), that is, the notation \(f(t,u^*)\) (say) stays for the value the function \(f\) assumes in correspondence of the values \(t\) and \(u^*\) of its arguments.

References

  1. Ajmone Marsan, G., Bellomo, N., Tosin, A.: Complex Systems and Society: Modeling and Simulation. Springer, New York (2013)

    Google Scholar 

  2. Cederman, L.E., Conte, R., Helbing, D., Nowak, A., Schweitzer, F., Vespignani, A.: Exploratory of society. Eur. Phys. J. Spec. Top. 214, 347–360 (2012)

    Article  Google Scholar 

  3. Helbing, D., Yu, W.: The future of social experimenting. Proc. Nat. Acad. Sci. USA 107, 5265–5266 (2010)

    Article  Google Scholar 

  4. Helbing, D.: Quantitative Sociodynamics. Stochastic Methods and Models of Social Interaction Processes, 2nd edn. Springer, Berlin (2010)

    MATH  Google Scholar 

  5. Galam, S.: Sociophysics: A Physicist’s Modeling of Psycho-political Phenomena. Springer, New York (2012)

    Book  Google Scholar 

  6. Castellano, C., Fortunato, S., Loreto, V.: Statistical physics of social dynamics. Rev. Mod. Phys. 81, 591–646 (2009)

    Article  Google Scholar 

  7. Kim, S.Y., Park, C.H., Kim, K.: Collective political opinion formation in nonlinear social interaction. Int. J. Mod. Phys. C 18(9), 1429–1434 (2007)

    Article  MATH  Google Scholar 

  8. Wang, R., Wang, Q.A.: Dual modeling of political opinion networks. Phys. Rev. E 84, 036108 (2011)

    Article  Google Scholar 

  9. Toscani, G.: Kinetic models of opinion formation. Commun. Math. Sci. 4, 481–496 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Boudin, L., Salvarani, F.: Modelling opinion formation by means of kinetic equations. In: Naldi, G., Pareschi, L., Toscani, G. (eds.) Mathematical Modeling of Collective Behavior in Socio-economic and Life Sciences, pp. 245–270. Birkhäuser, Boston (2010)

  11. Bellomo, N.: Modeling Complex Living Systems: A Kinetic Theory and Stochastic Game Approach. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston (2008)

  12. Bellomo, N.: Modeling the hiding-learning dynamics in large living systems. Appl. Math. Lett. 23(8), 907–911 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Bellomo, N., Bianca, C., Mongiovi, M.S.: On the modeling of nonlinear interactions in large complex systems. Appl. Math. Lett. 23(11), 1372–1377 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Coscia, V., Fermo, L., Bellomo, N.: On the mathematical theory of living systems II: the interplay between mathematics and system biology. Comput. Math. Appl. 62(10), 3902–3911 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Bellomo, N., Dogbè, C.: On the Modeling of traffic and crowds: a survey of models, speculations, and perspectives. SIAM Rev. 53, 409–463 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bellomo, N., Soler, J.: On the mathematical theory of the dynamics of swarms viewed as complex systems. Math. Mod. Meth. Appl. Sci. 22(Suppl. 2), 1230004 (2012)

    Article  Google Scholar 

  17. Coscia, V.: On the mathematical theory of living systems I: complexity analysis and representation. Math. Comput. Model. 54(9–10), 1919–19291 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Bellomo, N., Carbonaro, B.: Toward a mathematical theory of living systems focusing on developmental biology and evolution: a review and perspectives. Phys. Life Rev. 8, 1–18 (2011)

    Article  Google Scholar 

  19. Bertotti, M.L., Delitala, M.: Cluster formation in opinion dynamics: a qualitative analysis. Zeit. Angew. Math. Phys. 61, 583–602 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Bellomo, N., Herrero, M., Tosin, A.: On the dynamics of social conflicts: looking for the black swan. Kinet. Relat. Mod. 6, 459–479 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  21. Bellomo, N., Coscia, V.: Sources of Nonlinearity in the Kinetic Theory for Active Particles with Focus on the Formation of Political Opinions. In: Serrin, J.B., Mitidieri, E.L., Radulescu, V.D. (eds.) Recent Trends in Nonlinear Partial Differential Equations, ser. Contemporary Mathematics 10, pp. 99–113 (2013)

  22. Kaneko, K.: Life: An Introduction to Complex Systems Biology. Springer, Berlin (2006)

    Google Scholar 

  23. Mitchell, M.: Complexity: A Guided Tour. Oxford University Press, New York (2009)

    Google Scholar 

  24. Bellouquid, A., Delitala, M.: Mathematical Modeling of Complex Biological Systems. A Kinetic Theory Approach. Birkhauser, Boston (2006)

    MATH  Google Scholar 

  25. Arlotti, L., De Angelis, E., Fermo, L., Lachowicz, M., Bellomo, N.: On a class of integro-differential equations modeling complex systems with nonlinear interactions. Appl. Math. Lett. 25, 490–495 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Bellouquid, A., DeAngelis, E., Fermo, L.: Towards the modeling of vehicular traffic as a complex system: a kinetic theory approach. Math. Mod. Meth. Appl. Sci. 22(Suppl. 1), 1140003 (2012)

    Article  MathSciNet  Google Scholar 

  27. Benfenati, A., Coscia, V.: Nonlinear microscale interactions in the kinetic theory of active particles. Appl. Math. Lett. 26, 979–983 (2013)

    Article  MathSciNet  Google Scholar 

  28. Peres, L.R., Fontanari, J.F.: Effect of external fields in Axelrod’s model of social dynamics. Phys. Rev. E 86(3), 031131 (2012)

    Article  Google Scholar 

  29. Jailili, M.: Social power and opinion formation in complex networks. Physica A 392(4), 959–966 (2013)

    Article  Google Scholar 

  30. Sirbu, A., Loreto, V., Servidio, V.D.P., Tria, F.: Opinion dynamics with disagreement and modulated information. J. Stat. Phys. 151(1–2), 218–237 (2013)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Coscia.

Additional information

To Mariarosaria Padula, in memory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benfenati, A., Coscia, V. Modeling opinion formation in the kinetic theory of active particles I: spontaneous trend. Ann Univ Ferrara 60, 35–53 (2014). https://doi.org/10.1007/s11565-014-0207-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11565-014-0207-2

Keywords

Mathematics Subject Classification

Navigation