Skip to main content
Log in

Histomorphologie und Pathogenese der diabetischen Nephropathie

Histomorphology and pathogenesis of diabetic nephropathy

  • Leitthema
  • Published:
Der Nephrologe Aims and scope

Zusammenfassung

Diabetes mellitus und Organbeteiligungen bzw. assoziierte Erkrankungen sind insgesamt häufig und zeigen nicht nur in den westlichen Ländern eine zunehmende Inzidenz, sodass sie mittlerweile ein großes weltweites gesundheitspolitisches Problem darstellen. Diabetes mellitus ist v. a. auch deswegen so ernst zu nehmen, da die Inzidenz auch bei Kindern und jungen Erwachsenen bedrohlich zunimmt; Schätzungen gehen davon aus, dass in den USA im Jahr 2025 jedes dritte 2000 geborene Individuum an Diabetes mellitus leiden wird, was langfristig die Lebenserwartung der Bevölkerung dramatisch reduziert. Neben kardiovaskulären Erkrankungen, wie z. B. Bluthochdruck, koronare Herzkrankheit und Schlaganfall, stellt v. a. die Nierenbeteiligung bei Diabetes mellitus, die sog. diabetische Nephropathie (DN), ein zunehmendes und ernsthaftes Problem dar. In Deutschland ist die DN mittlerweile mit etwa 35 % mit weitem Abstand die häufigste Ursache der terminalen Niereninsuffizienz. Im Folgenden soll auf die Pathogenese und Morphologie der DN unter besonderer Berücksichtigung neuer Therapieprinzipien eingegangen werden.

Abstract

Diabetes mellitus and organ involvement or associated diseases are a medical problem worldwide with an ever increasing incidence and prevalence, not only in western countries. Diabetes mellitus must be taken seriously particularly because the incidence in children and young adults is increasing in a threatening way. It is estimated that in the USA by 2025 every third individual born in 2000 will suffer from diabetes, which in the long term will drastically reduce the life expectation of the population. In addition to cardiovascular diseases, such as high blood pressure, coronary heart disease and stroke, the renal involvement in diabetes mellitus, the so-called diabetic nephropathy (DN) in particular represents an increasing and serious problem. In Germany DN now represents with approximately 35% the leading single course by far of end-stage renal disease. This article deals with the pathogenesis and morphology of DN with a special emphasis on new treatment principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Groop PH, Thomas MC, Moran JL, Waden J, Thorn LM, Makinen VP et al (2009) The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes 58:1651–1658

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Tang SC (2010) Diabetic nephropathy: a global and growing threat. Hong kong Med J 16:244–245

    CAS  PubMed  Google Scholar 

  3. Sharaf El Din UAA, Salem MM, Abdulazim DO (2017) Diabetic nephropathy: time to withhold developmentandprogression—a review. J Adv Res 8:363–373

    CAS  PubMed  PubMed Central  Google Scholar 

  4. American Diabetes A (2013) Standards of medical care in diabetes—2013. Diabetes Care 36(Suppl 1):S11–S66

    Google Scholar 

  5. Pfister F, Pfister E, Daniel C, Büttner-Herold M, Amann K (2017) Histopathologie der diabetischen Nephropathie. Nephrologe 12:400–406

    Google Scholar 

  6. Gonzalez Suarez ML, Thomas DB, Barisoni L, Fornoni A (2013) Diabetic nephropathy: Is it time yet for routine kidney biopsy? World J Diabetes 4(6):245–255

    PubMed  PubMed Central  Google Scholar 

  7. Chagnac A, Weinstein T, Korzets A, Ramadan E, Hirsch J, Gafter U (2000) Glomerular hemodynamics in severe obesity. Am J Physiol Renal Physiol 278:F817–F822

    CAS  PubMed  Google Scholar 

  8. Tomaszewski M, Charchar FJ, Maric C, McClure J, Crawford L, Grzeszczak W et al (2007) Glomerular hyperfiltration: a new marker of metabolic risk. Kidney Int 71:816–821

    CAS  PubMed  Google Scholar 

  9. Bosma RJ, van der Heide JJ, Oosterop EJ, de Jong PE, Navis G (2004) Body mass index is associated with altered renal hemodynamics in non-obese healthy subjects. Kidney Int 65:259–265

    PubMed  Google Scholar 

  10. Ingelfinger JR (2003) Forestalling fibrosis. N Engl J Med 349:2265–2266

    CAS  PubMed  Google Scholar 

  11. Praga M (2005) Synergy of low nephron number and obesity: a new focus on hyperfiltration nephropathy. Nephrol Dial Transplant 20:2594–2597

    PubMed  Google Scholar 

  12. Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens 1:335–347

    CAS  PubMed  Google Scholar 

  13. Saxena AB, Myers BD, Derby G, Blouch KL, Yan J, Ho B et al (2006) Adaptive hyperfiltration in the aging kidney after contralateral nephrectomy. Am J Physiol Renal Physiol 291:F629–F634

    CAS  PubMed  Google Scholar 

  14. Brenner BM, Lawler EV, Mackenzie HS (1996) The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int 49:1774–1777

    CAS  PubMed  Google Scholar 

  15. Chuang PY, Dai Y, Liu R, He H, Kretzler M, Jim B et al (2011) Alteration of forkhead box O (foxo4) acetylation mediates apoptosis of podocytes in diabetes mellitus. Plos One 6:e23566

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Isermann B, Vinnikov IA, Madhusudhan T, Herzog S, Kashif M, Blautzik J et al (2007) Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis. Nat Med 13:1349–1358

    CAS  PubMed  Google Scholar 

  17. Susztak K, Raff AC, Schiffer M, Bottinger EP (2006) Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 55:225–233

    CAS  PubMed  Google Scholar 

  18. Wolf G, Chen S, Ziyadeh FN (2005) From the periphery of the glomerular capillary wall toward the center of disease: podocyte injury comes of age in diabetic nephropathy. Diabetes 54:1626–1634

    CAS  PubMed  Google Scholar 

  19. Meyer TW, Bennett PH, Nelson RG (1999) Podocyte number predicts long-term urinary albumin excretion in Pima Indians with Type II diabetes and microalbuminuria. Diabetologia 42:1341–1344

    CAS  PubMed  Google Scholar 

  20. Pagtalunan ME, Miller PL, Jumping-Eagle S, Nelson RG, Myers BD, Rennke HG et al (1997) Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest 99:342–348

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Nakamura T, Ushiyama C, Suzuki S, Hara M, Shimada N, Ebihara I et al (2000) The urinary podocyte as a marker for the differential diagnosis of idiopathic focal glomerulosclerosis and minimal-change nephrotic syndrome. Am J Nephrol 20:175–179

    CAS  PubMed  Google Scholar 

  22. Lewko B, Stepinski J (2009) Hyperglycemia and mechanical stress: targeting the renal podocyte. J Cell Physiol 221:288–295

    CAS  PubMed  Google Scholar 

  23. Gross ML, El-Shakmak A, Szabo A, Koch A, Kuhlmann A, Munter K et al (2003) ACE-inhibitors but not endothelin receptor blockers prevent podocyte loss in early diabetic nephropathy. Diabetologia 46:856–868

    CAS  PubMed  Google Scholar 

  24. Welsh GI, Coward RJ (2010) Podocytes, glucose and insulin. Curr Opin Nephrol Hypertens 19:379–384

    CAS  PubMed  Google Scholar 

  25. Dronavalli S, Duka I, Bakris GL (2008) The pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol Metab 4(8):444–452

    CAS  PubMed  Google Scholar 

  26. Müller TD et al (2019) Glucagon-like peptide 1 (GLP-1). Mol Metab 30:72–130

    PubMed  PubMed Central  Google Scholar 

  27. McIntosh CH (2008) Incretin-based therapies for type 2 diabetes. Can J Diabetes 32(2):131–139

    CAS  PubMed  Google Scholar 

  28. Madsbad S (2009) Treatment of type 2 diabetes with incretin-based therapies. Lancet 373(9662):438–439

    PubMed  Google Scholar 

  29. Skov J et al (2013) Glucagon-like peptide‑1 (GLP-1): effect on kidney hemodynamics and renin-angiotensin-aldosterone system in healthy men. J Clin Endocrinol Metab 98(4):E664–E671

    CAS  PubMed  Google Scholar 

  30. Marso SP et al (2016) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 375(19):1834–1844

    CAS  PubMed  Google Scholar 

  31. Mann JFE et al (2017) Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med 377(9):839–848

    CAS  PubMed  Google Scholar 

  32. Muskiet MHA et al (2018) Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: an exploratory analysis of the ELIXA randomised, placebo-controlled trial. Lancet Diabetes Endocrinol 6(11):859–869

    CAS  PubMed  Google Scholar 

  33. Schernthaner G, Mogensen CE, Schernthaner GH (2014) The effects of GLP‑1 analogues, DPP‑4 inhibitors and SGLT2 inhibitors on the renal system. Diab Vasc Dis Res 11(5):306–323

    CAS  PubMed  Google Scholar 

  34. Luippold G et al (2018) Differences in kidney-specific DPP‑4 inhibition by linagliptin and sitagliptin. Diabetes Res Clin Pract 143:199–203

    CAS  PubMed  Google Scholar 

  35. Komala MG et al (2013) Sodium glucose cotransporter 2 and the diabetic kidney. Curr Opin Nephrol Hypertens 22(1):113–119

    CAS  PubMed  Google Scholar 

  36. Thomas MC, Cherney DZI (2018) The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia 61(10):2098–2107

    CAS  PubMed  Google Scholar 

  37. Vallon V et al (2014) SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am J Physiol Renal Physiol 306(2):F194–F204

    CAS  PubMed  Google Scholar 

  38. Kelly MS et al (2019) Efficacy and renal outcomes of SGLT2 inhibitors in patients with type 2 diabetes and chronic kidney disease. Postgrad Med 131(1):31–42

    PubMed  Google Scholar 

  39. Zou H, Zhou B, Xu G (2017) SGLT2 inhibitors: a novel choice for the combination therapy in diabetic kidney disease. Cardiovasc Diabetol. https://doi.org/10.1186/s12933-017-0547-1

    Article  PubMed  PubMed Central  Google Scholar 

  40. Osterby R, Hartmann A, Nyengaard JR, Bangstad HJ (2002) Development of renal structural lesions in type‑1 diabetic patients with microalbuminuria. Observations by light microscopy in 8‑year follow-up biopsies. Virchows Arch 440:94–101

    CAS  PubMed  Google Scholar 

  41. Osterby R, Tapia J, Nyberg G, Tencer J, Willner J, Rippe B et al (2001) Renal structures in type 2 diabetic patients with elevated albumin excretion rate. APMIS 109:751–761

    CAS  PubMed  Google Scholar 

  42. Najafian B, Alpers CE, Fogo AB (2011) Pathology of human diabetic nephropathy. Contrib Nephrol 170:36–47

    PubMed  Google Scholar 

  43. Saito Y, Kida H, Takeda S, Yoshimura M, Yokoyama H, Koshino Y et al (1988) Mesangiolysis in diabetic glomeruli: its role in the formation of nodular lesions. Kidney Int 34:389–396

    CAS  PubMed  Google Scholar 

  44. Stout LC, Kumar S, Whorton EB (1993) Focal mesangiolysis and the pathogenesis of the Kimmelstiel-Wilson nodule. Hum Pathol 24:77–89

    CAS  PubMed  Google Scholar 

  45. Brezniceanu ML, Liu F, Wei CC, Tran S, Sachetelli S, Zhang SL et al (2007) Catalase overexpression attenuates angiotensinogen expression and apoptosis in diabetic mice. Kidney Int 71:912–923

    CAS  PubMed  Google Scholar 

  46. Bagby SP (2007) Diabetic nephropathy and proximal tubule ROS: challenging our glomerulocentricity. Kidney Int 71:1199–1202

    CAS  PubMed  Google Scholar 

  47. Fioretto P, Sutherland DE, Najafian B, Mauer M (2006) Remodeling of renal interstitial and tubular lesions in pancreas transplant recipients. Kidney Int 69:907–912

    CAS  PubMed  Google Scholar 

  48. Bjorn SF, Bangstad HJ, Hanssen KF, Nyberg G, Walker JD, Viberti GC et al (1995) Glomerular epithelial foot processes and filtration slits in IDDM patients. Diabetologia 38:1197–1204

    CAS  PubMed  Google Scholar 

  49. White KE, Bilous RW (2004) Structural alterations to the podocyte are related to proteinuria in type 2 diabetic patients. Nephrol Dial Transplant 19:1437–1440

    PubMed  Google Scholar 

  50. Tervaert TW, Mooyaart AL, Amann K, Cohen AH, Cook HT, Drachenberg CB et al (2010) Pathologic classification of diabetic nephropathy. J Am Soc Nephrol 21:556–563

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Amann.

Ethics declarations

Interessenkonflikt

K. Amann gibt an, dass kein Interessenkonflikt besteht. C. Daniel erhielt eine Projekt-bezogene Förderung von Boehringer Ingelheim.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

H. Haller, Hannover

G. Wolf, Jena

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amann, K., Daniel, C. Histomorphologie und Pathogenese der diabetischen Nephropathie. Nephrologe 15, 145–152 (2020). https://doi.org/10.1007/s11560-020-00407-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11560-020-00407-9

Schlüsselwörter

Keywords

Navigation