Skip to main content
Log in

Nephrotoxizität bei Chemotherapie

Nephrotoxicity in chemotherapy

  • Leitthema
  • Published:
Der Nephrologe Aims and scope

Zusammenfassung

Hintergrund

Die Nierenfunktion spielt eine entscheidende Rolle bei der Auswahl und Durchführung der Chemotherapie bei malignen Erkrankungen, welche aufgrund der potenziellen Nebenwirkungen richtig gewählt und eingesetzt werden muss.

Fragestellung

Chemotherapien können ein akutes Nierenversagen auslösen oder zur Entwicklung oder einem Fortschreiten einer chronischen Nierenkrankheit beitragen. Zudem kann eine eingeschränkte Nierenfunktion die Nebenwirkungsrate erhöhen, Dosisreduktionen erforderlich machen oder sogar zum Abbruch einer Therapie führen.

Material und Methoden

Wir stellen häufig verwendete, potenziell nephrotoxische chemotherapeutische Substanzen sowie entsprechende präventive Maßnahmen vor. Außerdem wird die thrombotische Mikroangiopathie (TMA) als unerwünschte Nebenwirkung von Chemotherapien beschrieben.

Ergebnisse

Die potenzielle Nephrotoxizität sollte bereits vor Therapieeinleitung bedacht werden, da sowohl das akute Nierenversagen als auch die chronische Nierenkrankheit akut und im Langzeitverlauf mit einer erhöhten Morbidität und Mortalität assoziiert sind.

Schlussfolgerung

Die enge Zusammenarbeit des Nephrologen und des Hämatoonkologen ist von großer Bedeutung, um dem Patienten die bestmögliche Therapie mit niedriger Nebenwirkungsrate anbieten zu können.

Abstract

Background

Renal function plays a crucial role in the choice and administration of chemotherapy. The chemotherapy of malignant diseases is associated with potential renal and non-renal adverse side effects and should, therefore, be correctly selected and implemented.

Objective

Chemotherapy can induce acute kidney injury or lead to the development or aggravation of chronic kidney disease. In addition, impaired renal function can exacerbate adverse events, necessitate reduction in dosing or even lead to termination of therapy.

Material and methods

We present commonly used potentially nephrotoxic chemotherapeutic substances and the corresponding preventive measures. Furthermore, we present thrombotic microangiopathy (TMA) as an undesired side effect triggered by various chemotherapeutic agents.

Results

Potential nephrotoxicity should be recognized before induction of therapy as acute kidney failure as well as chronic kidney disease are associated with increased morbidity and mortality during the acute phase as well as during long-term follow-up.

Conclusion

Cooperation between nephrologists and hematologist-oncologists is very important in order to provide the best therapy with the lowest rate of side effects for patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literatur

  1. Bienholz A, Wilde B, Kribben A (2015) From the nephrologist’s point of view: diversity of causes and clinical features of acute kidney injury. Clin Kidney J 8(4):405–414

    Article  PubMed  PubMed Central  Google Scholar 

  2. Eljack ND, Ma HY, Drucker J, Shen C, Hambley TW, New EJ et al (2014) Mechanisms of cell uptake and toxicity of the anticancer drug cisplatin. Metallomics 6(11):2126–2133

    Article  PubMed  CAS  Google Scholar 

  3. Ishida S, Lee J, Thiele DJ, Herskowitz I (2002) Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci U S A 99(22):14298–14302

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73(9):994–1007

    Article  PubMed  CAS  Google Scholar 

  5. Oka T, Kimura T, Suzumura T, Yoshimoto N, Nakai T, Yamamoto N et al (2014) Magnesium supplementation and high volume hydration reduce the renal toxicity caused by cisplatin-based chemotherapy in patients with lung cancer: a toxicity study. BMC Pharmacol Toxicol 15:70

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kidera Y, Kawakami H, Sakiyama T, Okamoto K, Tanaka K, Takeda M et al (2014) Risk factors for cisplatin-induced nephrotoxicity and potential of magnesium supplementation for renal protection. PloS One 9(7):e101902

    Article  PubMed  PubMed Central  Google Scholar 

  7. Santoso JT, Lucci JA (2003) 3rd, Coleman RL, Schafer I, Hannigan EV. Saline, mannitol, and furosemide hydration in acute cisplatin nephrotoxicity: a randomized trial. Cancer Chemother Pharmacol 52(1):13–18

    Article  PubMed  CAS  Google Scholar 

  8. Muraki K, Koyama R, Honma Y, Yagishita S, Shukuya T, Ohashi R et al (2012) Hydration with magnesium and mannitol without furosemide prevents the nephrotoxicity induced by cisplatin and pemetrexed in patients with advanced non-small cell lung cancer. J Thorac Dis 4(6):562–568

    PubMed  CAS  PubMed Central  Google Scholar 

  9. Morgan KP, Snavely AC, Wind LS, Buie LW, Grilley-Olson J, Walko CM et al (2014) Rates of renal toxicity in cancer patients receiving Cisplatin with and without Mannitol. Ann Pharmacother 48(7):863–869

    Article  PubMed  Google Scholar 

  10. Xia L, Chen Z, Su K, Yin S, Wang J (2014) Comparison of cochlear cell death caused by cisplatin, alone and in combination with furosemide. Toxicol Pathol 42(2):376–385

    Article  PubMed  PubMed Central  Google Scholar 

  11. Merter AA, Mayir B, Erdogan O, Colak T (2015) Protective effects of amifostine on ischemia-reperfusion injury of rat kidneys. Indian J Pharmacol 47(2):185–189

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Choi JH, Oh JC, Kim KH, Chong SY, Kang MS, Oh DY (2002) Successful treatment of cisplatin overdose with plasma exchange. Yonsei Med J 43(1):128–132

    Article  PubMed  Google Scholar 

  13. Oguri T, Shimokata T, Ito I, Yasuda Y, Sassa N, Nishiyama M et al (2015) Extension of the Calvert formula to patients with severe renal insufficiency. Cancer Chemother Pharmacol 76(1):53–59

    Article  PubMed  CAS  Google Scholar 

  14. Oguri T, Shimokata T, Inada M, Ito I, Ando Y, Sasaki Y et al (2010) Pharmacokinetic analysis of carboplatin in patients with cancer who are undergoing hemodialysis. Cancer Chemother Pharmacol 66(4):813–817

    Article  PubMed  CAS  Google Scholar 

  15. Guddati AK, Joy PS, Marak CP (2014) Dose adjustment of carboplatin in patients on peritoneal dialysis. Med Oncol 31(5):946

    Article  PubMed  Google Scholar 

  16. El-Sisi AD, El-Syaad ME, El-Desoky KI, Moussa EA (2015) Protective effects of alpha lipoic acid versus N-acetylcysteine on ifosfamide-induced nephrotoxicity. Toxicol Ind Health 31(2):97–107

    Article  Google Scholar 

  17. Hanly L, Chen N, Rieder M, Koren G (2009) Ifosfamide nephrotoxicity in children: a mechanistic base for pharmacological prevention. Expert Opin Drug Saf 8(2):155–168

    Article  PubMed  CAS  Google Scholar 

  18. Buttemer S, Pai M, Lau KK (2011) Ifosfamide induced Fanconi syndrome. BMJ Case Rep. doi:10.1136/bcr.10.2011.4950

    PubMed  PubMed Central  Google Scholar 

  19. Hanly L, Figueredo R, Rieder MJ, Koropatnick J, Koren G (2012) The Effects of N-acetylcysteine on ifosfamide efficacy in a mouse xenograft model. Anticancer Res 32(9):3791–3798

    PubMed  CAS  Google Scholar 

  20. Wiczer T, Dotson E, Tuten A, Phillips G, Maddocks K (2015) Evaluation of incidence and risk factors for high-dose methotrexate-induced nephrotoxicity. J Oncol Pharm Pract. pii:1078155215594417. (Epub ahead of print)

    PubMed  Google Scholar 

  21. Liu WC, Chen HC, Chen JS (2014) Clinical dilemma over low-dose methotrexate therapy in dialysis patients: a case report and review of literature. Iran J Kidney Dis 8(1):81–84

    PubMed  CAS  Google Scholar 

  22. Mura S, Bui DT, Couvreur P, Nicolas J (2015) Lipid prodrug nanocarriers in cancer therapy. J Control Release 208:25–41

    Article  PubMed  CAS  Google Scholar 

  23. Izzedine H, Isnard-Bagnis C, Launay-Vacher V, Mercadal L, Tostivint I, Rixe O et al (2006) Gemcitabine-induced thrombotic microangiopathy: a systematic review. Nephrol Dial Transplant 21(11):3038–3045

    Article  PubMed  CAS  Google Scholar 

  24. Izzedine H, Perazella MA (2015) Thrombotic Microangiopathy, Cancer, and Cancer Drugs. Am J Kidney Dis 66(5):857–868

    Article  PubMed  CAS  Google Scholar 

  25. Elliott MA, Nichols WL (2001) Thrombotic thrombocytopenic purpura and hemolytic uremic syndrome. Mayo Clin Proc 76(11):1154–1162

    Article  PubMed  CAS  Google Scholar 

  26. Humphreys BD, Sharman JP, Henderson JM, Clark JW, Marks PW, Rennke HG et al (2004) Gemcitabine-associated thrombotic microangiopathy. Cancer 100(12):2664–2670

    Article  PubMed  Google Scholar 

  27. Zupancic M, Shah PC, Shah-Khan F (2007) Gemcitabine-associated thrombotic thrombocytopenic purpura. Lancet Oncol 8(7):634–641

    Article  PubMed  CAS  Google Scholar 

  28. Lee HW, Chung MJ, Kang H, Choi H, Choi YJ, Lee KJ et al (2014) Gemcitabine-induced hemolytic uremic syndrome in pancreatic cancer: a case report and review of the literature. Gut Liver 8(1):109–112

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fujimura Y, Matsumoto M (2010) Registry of 919 patients with thrombotic microangiopathies across Japan: database of Nara Medical University during 1998–2008. Intern Med 49(1):7–15

    Article  PubMed  Google Scholar 

  30. Bharthuar A, Egloff L, Becker J, George M, Lohr JW, Deeb G et al (2009) Rituximab-based therapy for gemcitabine-induced hemolytic uremic syndrome in a patient with metastatic pancreatic adenocarcinoma: a case report. Cancer Chemother Pharmacol 64(1):177–181

    Article  PubMed  CAS  Google Scholar 

  31. Murugapandian S, Bijin B, Mansour I, Daheshpour S, Pillai BG, Thajudeen B et al (2015) Improvement in Gemcitabine-Induced Thrombotic Microangiopathy with Rituximab in a Patient with Ovarian Cancer: Mechanistic Considerations. Case Rep Nephrol Dial 5(2):160–167

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kasper S, Neurath MF, Huber C, Theobald M, Scharrer I (2007) Protein A immunoadsorption therapy for refractory, mitomycin C-associated thrombotic microangiopathy. Transfusion 47(7):1263–1267

    Article  PubMed  CAS  Google Scholar 

  33. Gilbert RD, Stanley LK, Fowler DJ, Angus EM, Hardy SA, Goodship TH (2013) Cisplatin-induced haemolytic uraemic syndrome associated with a novel intronic mutation of treated with eculizumab. Clin Kidney J 6(4):421–425

    Article  PubMed  PubMed Central  Google Scholar 

  34. Eremina V, Jefferson JA, Kowalewska J, Hochster H, Haas M, Weisstuch J et al (2008) VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med 358(11):1129–1136

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kribben.

Ethics declarations

Interessenkonflikt

M. Stavropoulou, A. Kribben und A. Bienholz geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Additional information

Redaktion

M. Zeier, Heidelberg

J. Hoyer, Marburg

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stavropoulou, M., Kribben, A. & Bienholz, A. Nephrotoxizität bei Chemotherapie. Nephrologe 11, 14–19 (2016). https://doi.org/10.1007/s11560-015-0029-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11560-015-0029-y

Schlüsselwörter

Keywords

Navigation