Skip to main content
Log in

Sugarcane glycoproteins control dynamics of cytoskeleton during teliospore germination of Sporisorium scitamineum

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Sporisorium scitamineum teliospores possess an organized cytoskeleton involved in important developmental and physiological processes. It has been described that microtubules appear to be fundamental for nucleus translocation during germination and hyphal growth, whereas actin polymerization is necessary for the formation of invaginations during teliospore displacement. Here, a global vision of the actin cytoskeleton organization throughout the life cycle of S. scitamineum cells is shown, providing evidence that a perfectly structured F-actin network is necessary to trigger smut pathogenicity. Moreover, although myosin presence in teliospores had been previously described, herein actin and myosin co-locations are demonstrated by confocal microscopy during both invaginations formation and germination. In turn, F-actin and microtubules (MTs) interact, jointly participating in the establishment of cell polarity. The resistant sugarcane cultivar Mayari 55-14 produces high molecular mass glycoproteins (HMMG) that differently affect F-actin organization at different stages of fungal development. HMMG first supported F-actin to induce the movement of teliospores towards the cytoagglutination points. At later stages of fungal development, HMMG disorganized F-actin which prevented the protrusion of germinative tube. A continuous exposure to HMMG provoked apoptosis in pathogenic, diploid cells and a delay in sporidia conjugation that could be crucial for plant resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

B:

Barbados

BSA:

Bovine serum albumin

DAPI:

4′,6-Diamidino-2-phenylindole dihydrochloride

HMMG:

High molecular mass glycoproteins

IgG:

Immunoglobulin G

Jas:

Jasplakinolide

Lat A:

Latrunculin A

MT:

Microtubules

My:

Mayarí

Noc:

Nocodazole

PBS:

Phosphate saline buffer

PVP:

Polyvinylpyrrolidone

TEM:

Transmission electron microscopy

References

  • Åström H, Sorri O, Raudaskoski M (1995) Role of microtubules in the movement of the vegetative nucleus and generative cell in tobacco pollen tubes. Sex Plant Reprod 8:61–69

    Article  Google Scholar 

  • Baluška F, Barlow PW (1993) The role of the microtubular cytoskeleton in determining nuclear chromatin structure and passage of maize root cells through the cell cycle. Eur J Cell Biol 61:160–167

    PubMed  Google Scholar 

  • Baluška F, Parker JS, Barlow PW (1992) Specific patterns of cortical and endoplasmic microtubules associated with cell growth and tissue differentiation in roots of maize (Zea mays L.). J Cell Sci 103:191–200

    Google Scholar 

  • Banuett F, Herskowitz I (2002) Bud morphogenesis and the actin and microtubule cytoskeletons during budding in the corn smut fungus, Ustilago maydis. Fungal Gen Biol 37:149–170

    Article  Google Scholar 

  • Brand A, Gow NAR (2012) Tropic orientation responses of pathogenic fungi. In: Pérez-Martin J, Di Pietro A (eds) Morphogenesis and pathogenicity in Fungi. Springer Verlag, Berlin, pp 21–41

    Chapter  Google Scholar 

  • Deacon J (2006). Fungal structure and ultrastructure. In: Fungal biology (4° ed). Malden: Blackwell Publishing Ltd, pp.48–66

  • Gleason FH, Lilje O (2009) Structure and function of fungal zoospores: ecological implications. Fungal Ecol 2:53–59

    Article  Google Scholar 

  • Fuchs U, Manns I, Steinberg G (2005) Microtubules are dispensable for the initial pathogenic development but required for long-distance hyphal growth in the corn smut fungus Ustilago maydis. Mol Biol Cell 16:2746–2758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs CW, Adams AEM, Szaniszlo PJ, Pringle JR (1988) Functions of microtubules in the Saccharomyces cerevisiae cell cycle. J Cell Biol 107:1409–1426

    Article  CAS  PubMed  Google Scholar 

  • Legaz ME, Pedrosa MM, Martínez M, Vicente C (1995) Soluble glycoproteins from sugar cane juice analyzed by SE-HPLC and fluorescence emission. J Chromatogr 697:329–335

    Article  CAS  Google Scholar 

  • Lilly VG, Barnett HL (1951) Physiology of the Fungi. McGraw-Hill, New York

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Marx F, Binder U, Leiter E, Pocsi I (2008) The Penicillium chrysogenum antifungal protein PAF, a promising tool for the development of new antifungal therapies and fungal cell biology studies. Cell Mol Life Sci 65:445–454

    Article  CAS  PubMed  Google Scholar 

  • Millanes AM, Fontaniella B, Legaz ME, Vicente C (2005) Glycoproteins from sugarcane plants regulate cell polarity of Ustilago scitaminea teliospores. J Plant Physiol 162:253–265

    Article  CAS  PubMed  Google Scholar 

  • Milloning G (1961) Advantages of a phosphate buffer for OsO4 solutions in fixation. J Appl Phys 32:1637–1650

    Google Scholar 

  • Mills JC, Stone NL, Pittman RN (1999) Extranuclear apoptosis. J Cell Biol 146:703–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina MC, Stocker-Wörgötter E, Turk R, Bajon C, Vicente C (1998) Secreted, glycosylated arginase from Xanthoria parietina thallus induces loss of cytoplasmic material from Xanthoria photobionts. Cell Adh Commun 6:481–490

    Article  CAS  Google Scholar 

  • Morris NR (2000) Nuclear migration from fungi to the mammalian brain. J Cell Biol 148:1097–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Page B, Snyder M (1993) Chromosome segregation in yeast. Ann Rev Microbiol 47:201–231

    Article  Google Scholar 

  • Pillai MC, Baldwin JD, Cherr GN (1992) Early development in an algal gametophyte: role of the cytoskeleton in germination and nuclear translocation. Protoplasma 170:34–45

    Article  Google Scholar 

  • Que Y, Xu L, Wu Q, Liu Y, Ling H, Liu Y, Zhang Y, Guo J, Su Y, Chen J, Wang S, Zhang C (2014) Genome sequencing of Sporisorium scitamineum provides insights into the pathogenic mechanisms of sugarcane smut. BMC Genomics 15:996–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain for electron microscopy. J Cell Biol 17:208–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez OC, Schaefer AW, Mandato CA, Forscher P, Bement WM, Waterman-Storer CM (2003) Conserved microtubule–actin interactions in cell movement and morphogenesis. Nat Cell Biol 5(7):599–609

    Article  CAS  PubMed  Google Scholar 

  • Rosenblatt J, Raff MC, Cramer LP (2001) An epithelial cell destined for apoptosis signals its neighbors to extrude it by an actin- and myosin-dependent mechanism. Curr Biol 11(23):1847–1857

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Elordi E, Morales de los Ríos L, Vicente C, Legaz ME (2015) Sugar cane arginase competes with the same fungal enzyme as a false quorum signal against smut teliospores. Phytochem Lett 14:115–122

    Article  CAS  Google Scholar 

  • Sánchez-Elordi E, Vicente-Manzanares M, Díaz E, Legaz ME, Vicente C (2016a) Plant–pathogen interactions: sugarcane glycoproteins induce chemotaxis of smut teliospores by cyclic contraction and relaxation of the cytoskeleton. South Afr J Bot 105:66–78

    Article  CAS  Google Scholar 

  • Sánchez-Elordi E, Baluška F, Echevarría C, Vicente C, Legaz ME (2016b) Defence sugarcane glycoproteins disorganize microtubules and prevent nuclear polarization and germination of Sporisorium scitamineum teliospores. J Plant Physiol 200:111–123

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Elordi E, Morales-de los Ríos L, Díaz EM, Ávila A, Legaz ME, Vicente C (2016c) Defensive glycoproteins from sugarcane plants induce chemotaxis, cytoagglutination and death of smut teliospores. J Plant Pathol 98:493–501

    Google Scholar 

  • Santiago R, de Armas R, Fontaniella B, Vicente C, Legaz ME (2009) Changes insoluble and cell-wall-bound hydroxycinnamic and hydroxybenzoic acids in sugarcane cultivars inoculated with Sporisorium scitamineum sporidia. Eur J Plant Pathol 124:439–450

    Article  CAS  Google Scholar 

  • Santiago R, Alarcón B, de Armas R, Vicente C, Legaz ME (2012) Changes in cinnamyl alcohol dehydrogenases from sugarcane cultivars inoculated with Sporisorium scitamineum sporidia. Physiol Plant 145:245–259

    Article  CAS  PubMed  Google Scholar 

  • Snyder M, Gehrung S, Page BD (1991) Studies concerning the temporal and genetic control of cell polarity in Saccharomyces cerevisiae. J Cell Biol 114:515–532

    Article  CAS  PubMed  Google Scholar 

  • Steinberg G, Wedlich-Söldner R, Brill M, Schulz I (2001) Microtubules in the fungal pathogen Ustilago maydis are highly dynamic and determine cell polarity. J Cell Sci 114:609–622

    CAS  PubMed  Google Scholar 

  • Takenawa T, Miki H (2001) WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. J Cell Sci 114:1801–1809

    CAS  PubMed  Google Scholar 

  • Waller JM (1970) Sugarcane smut (Ustilago scitaminea) in Kenya: II infection and resistance. Trans Br Mycol Soc 54:405–414

    Article  Google Scholar 

  • Xiang X, Plamann M (2003) Cytoskeleton and motor proteins in filamentous fungi. Curr Op Microbiol 6:628–633

    Article  CAS  Google Scholar 

Download references

Funding

This work has been supported by a grant from the Complutense University (Spain) UCM, GR3/14.910081.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Estrella Legaz.

Additional information

Section Editor: Marc Stadler

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Elordi, E., Baluška, F., Vicente, C. et al. Sugarcane glycoproteins control dynamics of cytoskeleton during teliospore germination of Sporisorium scitamineum. Mycol Progress 18, 1121–1134 (2019). https://doi.org/10.1007/s11557-019-01510-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-019-01510-5

Keywords

Navigation