Skip to main content
Log in

Taxonomic re-evaluation of the genus Lambertella (Rutstroemiaceae, Helotiales) and allied stroma-forming fungi

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

The genus Lambertella is currently considered to be one of the largest genera in the family Rutstroemiaceae, and its major distinguishing character is the pigmentation of ascospores, besides a substratal stroma. Although Lambertella appears to be well-defined by morphological characters, its phylogenetic heterogeneity has been suggested in earlier studies. To circumscribe the genus more precisely, morphological examination and phylogenetic analysis was conducted on some Lambertella species and some allied stroma-forming fungi. In total, 58 taxa were included in the study, including 16 species with both a substratal stroma and pigmented ascospores. The polyphyly of Lambertella sensu lato was confirmed based on the phylogenetic analysis of ITS, LSU, and RPB2 regions. A highly supported clade is composed of five Lambertella species, including the type L. corni-maris. Morphologically, all species here included in Lambertella s. s. have brown ascospores prior to being discharged from asci, whereas in other species currently placed in Lambertella, but now excluded from the genus, they turn brown only after discharge. This clade was defined as Lambertella sensu stricto. Pigmentation of the ascospores was also recognized in Lanzia and Poculum, and even in the helotiaceous genus Hymenoscyphus, but always only after discharge. The convergent evolution of a dark substratal stroma in Rutstroemiaceae and Helotiaceae was also indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baral HO (1992) Vital versus herbarium taxonomy: morphological differences between living and dead cells of Ascomycetes, and their taxonomic implications. Mycotaxon 44:333–390

    Google Scholar 

  • Baral HO, Bemmann M (2014) Hymenoscyphus fraxineus vs. H. albidus – a comparative light-microscopical study on the causal agent of European ash dieback and related foliicolous, stroma-forming species. Mycology 5:228–290

    Article  PubMed  PubMed Central  Google Scholar 

  • Baral HO, Queloz V, Hosoya T (2014) Hymenoscyphus fraxineus, the correct scientific name for the fungus causing ash dieback in Europe. IMA Fungus 5:79–80

    Article  PubMed  PubMed Central  Google Scholar 

  • Dennis RWG (1968) British ascomycetes. J. Cramer, Lehre, Germany

    Google Scholar 

  • Dumont KP (1971) Sclerotiniaceae II. Lambertella. Memoirs of the New York Botanical Garden 22:1–178

  • Dumont KP, Korf RP (1971) Sclerotiniaceae I. Generic nomenclature. Mycologia 63:157–168

  • Dumont KP (1972) Sclerotiniaceae III. The generic names Poculum, Calycina and Lanzia. Mycologia 64:911–915

    Article  Google Scholar 

  • Dumont KP (1975) Sclerotiniaceae IX. Coprotinia. Mycologia 67:320–331

    Article  Google Scholar 

  • Dumont KP (1976) Sclerotiniaceae XI. On Moellerodiscus (Ciboriopsisi). Mycologia 68:233–267

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Groves JW, Elliott ME (1961) Self-fertility in the Sclerotiniaceae. Can J Bot 39:215–231

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Han JG, Shin HD (2008) Hymenoscyphus ginkgonis sp. nov. growing on leaves of Ginkgo biloba. Mycotaxon 103:189–195

    Google Scholar 

  • Hansen K, LoBuglio KF, Pfister DH (2005) Evolutionary relationships of the cup-fungus genus Peziza and Pezizaceae inferred from multiple nuclear genes: RPB2, β-tubulin, and LSU rDNA. Mol Phylogenet Evol 36:1–23

    Article  CAS  PubMed  Google Scholar 

  • Holst-Jensen A, Kohn LM, Schumacher T (1997) Nuclear rDNA phylogeny of the Sclerotiniaceae. Mycologia 89:885–899. doi:10.2307/3761109

    Article  CAS  Google Scholar 

  • Hosaka K (2009) Phylogeography of the genus Pisolithus revisited with some additional taxa from New Caledonia and Japan. Bull Natl Mus Nat Sci Ser B 35:151–167

    Google Scholar 

  • Hosaka K, Castellano MA (2008) Molecular phylogenetics of Geastrales with special emphasis on the position of Sclerogaster. Bull Natl Mus Nat Sci Ser B 34:161–173

    Google Scholar 

  • Hosoya T, Otani Y (1997) Lambertella advenula, a new combination proposed for Moellerodiscus advenulus, new to Japan. Mycoscience 38:305–311

    Article  CAS  Google Scholar 

  • Johnston PR, Park D, Baral H-O, Galán R, Platas G, Tena R (2014) The phylogenetic relationships of Torrendiella and Hymenotorrendiella gen. nov.within the Leotiomycetes, where the ascus apical apparatus is shown to differ between Helotiaceae and Sclerotiniaceous taxa. Phytotaxa 177(1): 001–025. doi:10.11646/phytotaxa.177.1.1

  • Kirk PM, Cannon PF, Mimter DW, Stalpers JA (2008) Dictionary of the fungi, 10th edn. CABI, New York

    Google Scholar 

  • Korf RP (1973) Discomycetes and tuberales. In: Ainsworth GC, Sparrow FK, Sussman AS (eds) The fungi: an advanced treatise, vol. 4A. Academic Press, London and New York, pp 249–319

  • Korf RP, Zhuang WY (1985) A synoptic key to the species of Lambertella (Sclerotiniaceae), with comments on a version prepared for TAXADAT, Anderegg’s computer program. Mycotaxon 24:361–386

    Google Scholar 

  • Kowalski T, Holdenrieder O (2009) The teleomorph of Chalara fraxinea, the causal agent of ash dieback. For Pathol 39:304–308

    Google Scholar 

  • Moncalvo JM, Wang HH, Hseu RS (1995) Phylogeneitc relationships in Ganoderma inferred from the internal transcribed spacer and 25S ribosomal DNA sequences. Mycologia 87:223–238

    Article  CAS  Google Scholar 

  • Murakami T, Hashimoto M, Okuno T (2005a) Isolation, structure elucidation, preparation, and biological properties of neolambertellin. Bioorg Med Chem Lett 15:4185–4188

    Article  CAS  PubMed  Google Scholar 

  • Murakami T, Sasaki A, Fukushi E (2005b) Lambertellol C, a labile and novel biosynthetic congener of lambertellols A and B. Bioorg Med Chem Lett 15:2587–2590

    Article  CAS  PubMed  Google Scholar 

  • Murakami T, Takada N, Hehre W (2008) Structure and biosynthesis of norneolambertellin produced by Lambertella sp. 1346. Bioorg Med Chem Lett 18:4547–4549

    Article  CAS  PubMed  Google Scholar 

  • Otani Y (1979) Note on some interesting cup-fungi in Tsukuba Academic New Town. Bull Natl Mus Nat Sci Ser B 5:51–60

    Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding Consortium (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci 109:6241–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma MP, Sharda RM (1985) The genus Lanzia Sacc. in India. Int J Mycol Lichenology 2:95–118

    Google Scholar 

  • Skerman VBD (1968) A new type of micromanipulator and microforge. J Gen Microbiol 54:287–297

    Article  CAS  PubMed  Google Scholar 

  • Spooner BM (1987) Helotiales of Australasia: Geoglossaceae, Orbiliaceae, Sclerotiniaceae, Hyaloscyphaceae. Bibl Mycol 116:1–711

    Google Scholar 

  • Svrček M (1957) Piceomphale bulgarioides (Rabehh. In Kalchbr.) Svrček comb. N. a poznámky k problematice diskomycetu Ombrohpila strobilina v pojeti Rehmove. Česká Mykol 11:235–240

    Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony and other methods (*PAUP version 4.0 beta 10). Sinauer, Sunderland

    Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verkley GJM (1993a) Ultrastructure of the ascus apical apparatus in ten species of Sclerotiniaceae. Mycol Res 97:179–194. doi:10.1016/S0953-7562(09)80240-2

    Article  Google Scholar 

  • Verkley GJM (1993b) Ultrastructure of the ascus apical apparatus in Hymenoscyphus and other genera of the Hymenoscyphoideae (Leotiales, Ascomycotina). Persoonia 15:303–340

    Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Binder M, Hibbett DS (2005) Life history and systematic of the aquatic discomycetes Mitrula (Helotiales, Ascomycota) based on cultural, morphological, and molecular studies. Am J Bot 92:1565–1574

    Article  PubMed  Google Scholar 

  • Wang Z, Binder M, Schoch CL, Johnston PR, Spatafora JW, Hibbett DS (2006) Evolution of helotialean fungi (Leotiomycetes, Pezizomycotina): a nuclear rDNA phylogeny. Mol Phylogenet Evol 41:295–312

    Article  CAS  PubMed  Google Scholar 

  • Whetzel HH (1943) A monograph of Lambertella, a genus of brown-spored inoperculate discomycetes. Lloydia 6:18–52

    Google Scholar 

  • Whetzel HH (1945) A synopsis of the genera and species of the Sclerotiniaceae, a family of stromatic inoperculate discomycets. Mycologia 37:648–714

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315–322. In: PCR Protocols. A Guide To Methods And Applications, Innis MA, Gelfand DH,Sninsky JJ, and White TJ, eds. Academic Press, Inc., New York.

  • Willetts HJ (1997) Morphology, development and evolution of stromata/sclerotia and macroconidia of the Sclerotiniaceae. Mycol Res 101:939–952

    Article  Google Scholar 

  • Zhao YJ, Hosoya T, Baral HO, Hosaka K, Kakishima M (2012) Hymenoscyphus pseudoalbidus, the correct name for Lambertella albida as reported from Japan. Mycotaxon 122:25–41

    Article  Google Scholar 

  • Zhao YJ, Hosoya T, Shirouzu T, Kakishima M, Yamaoka Y (2013) Lambertella pyrolae, a new rutstroemiaceous fungus from Japan. Phytotaxa 136:54–60

    Article  Google Scholar 

  • Zhuang WY, Zhang YH (2002) Designation of an epitype of Helotium yunnanense and its transfer to the genus Lambertella (Rutstroemiaceae, Ascomycota). Taxon 51:769–770

    Article  Google Scholar 

  • Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Dissertation, University of Texas at Austin

Download references

Acknowledgments

The work of this paper is the partial content of the doctoral thesis of the first author. The author would like to thank Prof. Yuichi Yamaoka and Prof. Makoto Kakishima (Tsukuba University, Japan) for the critical suggestions during the accomplishment of the thesis. H.O. Baral is thanked for valuable suggestions to the manuscript. This study was partially supported by the integrated research on biodiversity of interspecies relationships in the National Museum of Nature and Science, and by Grant-in-Aid for Scientific Research (B) 26291084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Jie Zhao.

Additional information

Section Editor: Gerhard Rambold

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 51 kb)

ESM 2

(DOCX 25 kb)

ESM 3

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, YJ., Hosaka, K. & Hosoya, T. Taxonomic re-evaluation of the genus Lambertella (Rutstroemiaceae, Helotiales) and allied stroma-forming fungi. Mycol Progress 15, 1215–1228 (2016). https://doi.org/10.1007/s11557-016-1225-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-016-1225-5

Keywords

Navigation