Skip to main content
Log in

Identification of fungal genes involved in the preinfection events between ectomycorrhizal association (Pisolithus tinctorius and Pinus massoniana)

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

The preinfection stage of establishment of the mycorrhiza before physical contact between symbionts is crucial, as changes that occur throughout mycorrhiza formation are set in motion at this time. To improve the understanding of the molecular mechanisms involved in the fungus Pisolithus tinctorius during its interaction with its symbiotic partner Pinus massoniana, we set up a cellophane-separated culture system avoiding physical contact between the symbionts. A cDNA subtraction library representing the differentially expressed genes of P.tinctorius during the preinfection stage was constructed using suppression subtractive hybridization combined with mirror orientation selection (SSH/MOS). Differential screening of the SSH library allowed us to identify 133 unique cDNA clones. Sequences analysis of the expressed sequence tags (ESTs) showed that they represent 23 differentially expressed genes, of which 10 are involved in metabolism and energy, transcription and protein fate, membrane proteins and signaling, and cell rescue and defense, and 13 encoding hypothetical proteins with unknown function. Some fungal genes have not been previously identified in other ectomycorrhizal associations. Expression of the genes that code for ubiquitin-conjugating enzyme E2, 40S ribosomal protein, maternal g10 transcript, ADP ribosylation factor 6, and cytochrome P450 were evaluated by RT-qPCR, confirming the activation of these genes during the preinfection stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acioli-Santos B, Sebastiana M, Pessoa F, Sousa L, Figueiredo A, Fortes AM, Baldé A, Maia LC, Pais MS (2008) Fungal transcript pattern during the preinfection stage (12 h) of ectomycorrhiza formed between Pisolithus tinctorius and Castanea sativa roots, identified using cDNA microarrays. Curr Microbiol 57:620–625

    Article  CAS  PubMed  Google Scholar 

  • Alkhalfioui F, Renard M, Frendo P, Keichinger C, Meyer Y, Gelhaye E, Hirasawa M, Knaff DB, Ritzenthaler C, Montrichard F (2008) A novel type of thioredoxin dedicated to symbiosis in legumes. Plant Physiol 148:424–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buchanan B, Balmer Y (2005) Redox regulation: a broadening horizon. Annu Rev Plant Biol 56:187–220

    Article  CAS  PubMed  Google Scholar 

  • Clarke S, Banfield K (2001) S-adenosyl-L-methionine-dependent methyltransferases. In: Carmel R, Jacobsen DW (eds) Homocysteine in health and disease. Cambridge University Press, Londen, pp 63–78

    Google Scholar 

  • Courbot M, Diez L, Ruotolo R, Chalot M, Leroy P (2004) Cadmium-responsive thiols in the ectomycorrhizal fungus Paxillus involutus. Appl Environ Microbiol 70:7413–7417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duplessis S, Courty PE, Tagu D, Martin F (2005) Transcript patterns associated with ectomycorrhiza development in Eucalyptus globulus and Pisolithus microcarpus. New Phytol 165:599–611

    Article  CAS  PubMed  Google Scholar 

  • Dworkin MB, Dworkin-Rastl E (1990) Functions of maternal mRNA in early development. Mol Reprod Dev 26(3):261–297

    Article  CAS  PubMed  Google Scholar 

  • Felten J, Martin F, Legué V (2012) Signalling in ectomycorrhizal symbiosis. In: Perotto S, Baluska F (eds) Signaling and communication in plant symbiosis. Springer, Berlin, pp 123–142

    Chapter  Google Scholar 

  • Gillingham AK, Munro S (2007) The small G proteins of the Arf family and their regulators. Annu Rev Cell Dev Biol 23:579–611

    Article  CAS  PubMed  Google Scholar 

  • González-Guerrero M, Cano C, Azcón-Aguilar C, Ferrol N (2007) GintMT1 encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress. Mycorrhiza 17:327–335

    Article  PubMed  Google Scholar 

  • Hilbert JL, Costa G, Martin F (1991) Ectomycorrhizin synthesis and polypeptide changes during the early stage of eucalypt mycorrhiza development. Plant Physiol 97:977–984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holmgren A (1995) Thioredoxin. Annu Rev Biochem 54:237–271

    Article  Google Scholar 

  • Hua XM (1995a) Introduction to mycorrhiza. In: Hua XM (ed) Studies on mycorrhiza of forest trees. Chinese Sci Tech Press, Beijing, pp 1–20

    Google Scholar 

  • Hua XM (1995b) Nutritional source study for super-strain of ectomycorrhizal fungus, Pisolithus tinctorius. For Res 8(6):597–604

    Google Scholar 

  • Hua XM (2001) Mycorrhizal biotechnology of forest trees. World For Res 14(1):22–29

    Google Scholar 

  • Inoue H, Nojima H, Okayama H (1990) High efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28

    Article  CAS  PubMed  Google Scholar 

  • Johansson T, Le Quéré A, Ahren D, Söderström B, Erlandsson R, Lundeberg J, Uhlen M, Tunlid A (2004) Transcriptionnal responses of Paxillus involutus and Betula pendula during formation of ectomycorrhizal root tissue. Mol Plant-Microbe Interact 17:202–215

    Article  PubMed  Google Scholar 

  • Joshi CP, Chiang VL (1998) Conserved sequence motifs in plant S-adenosyl- l-methionine-dependent methyltransferases. Plant Mol Biol 37:663–674

    Article  CAS  PubMed  Google Scholar 

  • Lanfranco L, Bolchi A, Ros EC, Ottonello S, Bonfante P (2002) Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. Plant Physiol 130:58–67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laurent P, Voiblet C, Tagu D, De Carvalho D, Nehls U, De Bellis R, Balestrini R, Bauw G, Bonfante P, Martin F (1999) A novel class of ectomycorrhiza-regulated cell wall polypeptides in Pisolithus tinctorius. Mol Plant-Microbe Interact 12:862–871

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C (T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Tagu D (1995) Genetics and molecular biology. Genetic transformation of ectomycorrhizal fungi. In: Varma A, Hock B (eds) Mycorrhiza: structure, molecular biology and biotechnology. Springer, Berlin, pp 51–74

    Google Scholar 

  • Martin F, Lapeyrie F, Tagu D (1997) Altered gene expression during ectomycorrhiza development in the mycota. In: Lemke P, Caroll G (eds) Plant relationships. Springer, Berlin, pp 223–242

    Chapter  Google Scholar 

  • Martin F, Laurent P, De Carvalho D, Voiblet C, Balestrini R, Bonfante P, Tagu D (1999) Cell wall proteins of the ectomycorrhizal basidiomycete Pisolithus tinctorius: identification, function, and expression in symbiosis. Fungal Genet Biol 27:161–174

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Kohler A, Duplessis S (2007) Living in harmony in the wood underground: ectomycorrhizal genomics. Curr Opin Plant Biol 10:204–210

    Article  CAS  PubMed  Google Scholar 

  • Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59:153–163

    Google Scholar 

  • Marx DH (1977) Tree host range and world distribution of the ectomycorrhizal fungus Pisolithus tinctorius. Can J Microbiol 23:217–223

    Article  CAS  PubMed  Google Scholar 

  • Memon AR (2004) The role of ADP-ribosylation factor and SAR1 in vesicular trafficking in plants. Biochim Biophys Acta 1664:9–30

    Article  CAS  PubMed  Google Scholar 

  • Menotta M, Amicucci A, Sisti D, Gioacchini AM, Stocchi V (2004) Differential gene expression during pre-symbiotic interaction between Tuber borchii Vittad. and Tilia Americana L. Curr Genet 46:158–165

    Article  CAS  PubMed  Google Scholar 

  • Morel M, Jacob C, Kohler A, Johansson T, Martin F, Chalot M, Brun A (2005) Identification of genes differentially expressed in extraradical mycelium and ectomycorrhizal roots during Paxillus involutus-Betula pendula ectomycorrhizal symbiosis. Appl Environ Microbiol 71:382–391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nelson DR (1999) Cytochrome P450 and the individuality of species. Arch Biochem Biophys 369:1–10

    Article  CAS  PubMed  Google Scholar 

  • Peter M, Courty PE, Kohler A, Delaruelle C, Martin D, Tagu D, Frey-Klett P, Duplessis S, Chalot M, Podila G, Martin F (2003) Analysis of expressed sequence tags from the ectomycorrhizal basidiomycetes Laccaria bicolor and Pisolithus microcarpus. New Phytol 159:117–129

    Article  CAS  Google Scholar 

  • Peters JM, Harris IR, Finley D (1998) Ubiquitin and the biology of the cell. Plenum, New York

    Book  Google Scholar 

  • Podila GK, Zheng J, Balasubramanian S, Sundaram S, Hiremath S, Brand J, Hymes M (2002) Molecular interactions in ectomycorrhizas: identification of fungal genes involved in early symbiotic interactions between Laccaria bicolor and red pine. Plant Soil 244:117–128

    Article  CAS  Google Scholar 

  • Rebrikov DV, Britanova OV, Gurskaya NG, Lukyanov KA, Tarabykin VS, Lukyanov SA (2000) Mirror orientation selection (MOS): a method for eliminating false positive clones from libraries generated by suppression subtractive hybridization. Nucleic Acids Res 28:E90

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Silva Coelho I, Queiroz MV, Costa MD, Kasuya MCM, Araújo EF (2010) Identification of differentially expressed genes of the fungus Hydnangium sp. during the pre-symbiotic phase of the ectomycorrhizal association with Eucalyptus grandis. Mycorrhiza 20:531–540

    Article  PubMed  Google Scholar 

  • Stommel M, Mann P, Franken P (2001) EST-library construction using spore RNA of the arbuscular mycorrhizal fungus Gigaspora rosea. Mycorrhiza 10:281–285

    Article  CAS  Google Scholar 

  • Tamai KT, Liu X, Silar P, Sosinowski T, Thiele DJ (1994) Heat shock transcription factor activates yeast metallothionein gene expression in response to heat and glucose starvation via distinct signalling pathways. Mol Cell Biol 14:8155–8165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Voiblet C, Duplessis S, Encelot N, Martin F (2001) Identification of symbiosis-regulated genes in Eucalyptus globulus-Pisolithus tinctorius ectomycorrhiza by differential hybridization of arrayed cDNAs. Plant J 25(2):181–191

    Article  CAS  PubMed  Google Scholar 

  • Weiss M, Mikolajewski S, Peipp H, Schmitt U, Schmidt J, Wray V, Strack D (1997) Tissue-specific and development-dependent accumulation of phenylpropanoids in larch mycorrhizas. Plant Physiol 114:15–27

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yuksel B, Memon A (2009) Legume small GTPases and their role in the establishment of symbiotic associations with Rhizobium spp. Plant Signal Behav 4(4):257–260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zaretsky M, Sitrit Y, Mills D, Roth-Bejerano N, Kagan-Zur V (2006) Expression of fungal genes at preinfection and mycorrhiza establishment between Terfezia boudieri isolates and Cistus incanus hairy root clones. New Phytol 171:837–846

    Article  CAS  PubMed  Google Scholar 

  • Zheng LY, Li WD, Cheng XF, Hua XM (2003) Study on Ecto-endomycorrohizae Associated by Pisolithus tinctorius with Pine. For Res 16(3):262–268

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Zhejiang Province, China (Grant Nos. Y3090380, Y3110048, Y13C160011 and Y3110530) and the Project of Innovation team construction and Talents cultivation on Forest food research (Grant No. 2012bF20012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Li.

Additional information

Haibo Li and Huazheng Peng contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Peng, H., Wang, L. et al. Identification of fungal genes involved in the preinfection events between ectomycorrhizal association (Pisolithus tinctorius and Pinus massoniana). Mycol Progress 13, 123–130 (2014). https://doi.org/10.1007/s11557-013-0899-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-013-0899-1

Keywords

Navigation