Skip to main content
Log in

Integrated video motion estimator with Retinex-like pre-processing for robust motion analysis in automotive scenarios: algorithmic and real-time architecture design

  • Special Issue
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

The paper presents a novel technique for robust motion analysis in real automotive scenarios based on integrated Retinex-like pre-processing algorithm with block matching video motion estimator. Both algorithmic and real-time hardware design issues are discussed. The benefits of the proposed technique are manifold: the entire system is more robust; the estimated motion vectors are more reliable and less dependent on critical ambient conditions like shadows or flashes; the proposed algorithm may allow to perform motion estimation using very few bits and running as a 2- or 1-bit transform, still maintaining good performances. Real-time hardware implementation is achieved by design and synthesis in 65 nm CMOS standard-cells technology of an Application Specific Instruction-set Processor. Design optimizations for both the processing core and the memory organization are presented. With respect to the state of the art the proposed hardware implementation ensures bounded circuit complexity, low power consumption and reprogrammability of the technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yamada, K., Soga, M.: A compact integrated visual motion sensor for ITS applications. IEEE Trans. Intell. Transp. Syst. 4(1), 35–42 (2003)

    Article  Google Scholar 

  2. Gillner, W.: Motion based vehicle detection on motorways. IEEE Int. Veh. Symp. pp. 483–487 (1995)

  3. McCall, J.: Video-based lane estimation and tracking for driver assistance: survey, system, evaluation. IEEE Trans. Intell. Transp. Syst. 7(1), 20–37 (2006)

    Article  Google Scholar 

  4. Soga, M., Kato, T., Ohta, M., Ninomiya, Y.: Pedestrian detection with stereo vision. ICDE Workshops 2005

  5. He, Z., Qin, Z., Wen, H.: Video-based measure of traffic volume parameter. In: IEEE International Conference on Automation and Logistics, pp. 421–425 (2007)

  6. Boltz, S., Wolsztynski, E., Debreuve, E., Thierry, E., Barlaud, M., Pronzato, L.: A minimum-entropy procedure for robust motion estimation. In: IEEE ICIP 2006, pp. 1249–1252 (2006)

  7. Barjatya, A.: Block matching algorithms for motion estimation. Matlab central: http://www.mathworks.com/matlabcentral/fileexchange/8761 (2005)

  8. Cheung, H.-K., Siu, W.-C., Feng, D., Wang, Z.: Retinex based motion estimation for sequences with brightness variations and its application to H.264. In: IEEE international conference on acoustics, speech and signal processing, 2008 (ICASSP 2008), pp. 1161–1164 (2008)

  9. Cheung, H.-K., Siu, W.-C., Feng, D., Wan, Z.: Constrained one-bit transform for Retinex based motion estimation for sequences with brightness variations. In: International Conference on Neural Networks and Signal Processing, 2008, pp. 682–685 (2008)

  10. Cheung, H.-K., Siu, W.-C., Feng, D., Wang, Z.: Windowing technique for the DCT based Retinex algorithm to handle videos with brightness variations coded using the H.264. In: IEEE ICIP 2008, pp. 2860–2863 (2008)

  11. Urhan, O., Erturk, S.: Constrained one-bit transform for low complexity block motion estimation. IEEE Trans. Circ. Syst. Video Technol. 17(4), 478–482 (2007)

    Article  Google Scholar 

  12. Lee, S., Kim, J.-M., Chae, S.-I.: New motion estimation algorithm using adaptively quantized low bit-resolution image and its VLSI architecture for MPEG2 video encoding. IEEE Trans. Circ. Syst. Video Technol. 8(6), 734–744 (1998)

    Article  Google Scholar 

  13. Feng, J., Lo, K.-T., Mehrpour, H., Karbowiak, A.E.: Adaptive block matching motion estimation algorithm using bit-plane matching. IEEE ICIP 2005 3, 496–499 (1995)

    Google Scholar 

  14. Erturk, A., Erturk, S.: Two-bit transform for binary block motion estimation. IEEE Trans. Circ. Syst. Video Technol. 15(7), 938–946 (2005)

    Article  Google Scholar 

  15. Celebi, A., Urhan, O., Hamzaoglu, I., Erturk, S.: Efficient hardware implementations of low bit depth motion estimation algorithms. IEEE Signal Process. Lett. 6(6), 513–516 (2009)

    Article  Google Scholar 

  16. Erturk, S.: Multiplication-free one-bit transform for low-complexity block-based motion estimation. IEEE Signal Process. Lett. 14(2), 109–112 (2007)

    Article  Google Scholar 

  17. Land, E.H., McCann, J.: Lightness and Retinex theory. J. Opt. Soc. Am. 61(1), 1–11 (1971)

    Google Scholar 

  18. Funt, B., Ciurea, F., McCann, J.: Retinex in Matlab. In: Proceedings of IS&T/SID 8th Color Imaging Conference, pp. 112–121 (2000)

  19. Jobson, D.J., Rahman, Z., Woodell, G.A.: Properties and performance of a center/surround Retinex. IEEE Trans. Image Process. 6(3), 451–462 (1997)

    Article  Google Scholar 

  20. Orsini, G., Ramponi, G., Carrai, P., Di Federico, R.: A modified Retinex for image contrast enhancement and dynamics control. In: IEEE ICIP 2003, Barcelona, Spain (2003)

  21. Marsi, S., Impoco, G., Ukovich, A., Ramponi, G., Carrato, S.: Using a recursive rational filter to enhance color images. IEEE Trans. Instrum. Meas. 57, 1230–1236 (2008)

    Article  Google Scholar 

  22. Ramponi, G.: Polynomial and rational operators for image processing and analysis. In: Mitra, S.K., Sicuranza, G.L. (eds.) Nonlinear Image Processing. Academic Press, New York (2000)

  23. Jain, A.K.: Fundamentals of Digital Image Processing. Prentice-Hall International, Englewood Cliffs, NJ (1989)

  24. Saponara, S., Fanucci, L., Ramponi, G., Marsi, S.: Algorithmic and architectural design for real-time and power-efficient Retinex image/video processing. J. Real Time Image Process. 1(4), 267–283 (2007)

    Article  Google Scholar 

  25. Saponara, S., Fanucci, L., Ramponi, G., Marsi, S., Kammler, D., Witte, E.: Application-specific instruction-set processor for Retinex-like image and video processing. IEEE Trans. Circ. Syst II 54(7), 596–600 (2007)

    Article  Google Scholar 

  26. Gilge, M.: Motion estimation by scene adaptive block matching (SABM) and illumination correction. In: SPIE Conference on Image Processing Algorithms and Techniques, pp. 355–366 (1990)

  27. Schliebusch, O., Chattopadhyay, A., Witte, E.M., Kammler, D., Ascheid, G., Leupers, R., Meyr, H.: Optimization techniques for ADL-driven RTL processor synthesis. In: Proceedings of IEEE Workshop on Rapid Prototyping Systems, Montreal, pp. 165–171 (2005)

  28. Schliebusch, O., Chattopadhyay, A., Kammler, D., Ascheid, G., Leupers, R., Meyr, H., Kogel, T.: A framework for automated and optimized ASIP implementation supporting multiple hardware description languages. IEEE ASP-DAC 1, 280–285 (2005)

    Article  Google Scholar 

  29. Dinoi, L., Martini, R., Masera, G., Quaglio, F., Vacca, F.: ASIP design for partially structured LDPC codes. Electron. Lett. 42(18), 49–50 (2006)

    Article  Google Scholar 

  30. Momcilovic, S. et al.: Application specific instruction set processor for adaptive video motion estimation. In: Proceedings of IEEE Euromicro DSD, pp 160–167 (2006)

  31. Bajot, Y., Mehrez, H.: Customizable DSP architecture for ASIP core design. In: Proceedings of ISCAS’01, pp. 302–305 (2001)

  32. Kappen, G., Noll, T.: Application specific instruction processor based implementation of a GNSS receiver on an FPGA. In: IEEE DATE’06, vol. 2, pp. 1–6 (2006)

  33. Lee, J., Moon, J., Heo, K., Sunwoo, M., Oh, S., Kim, I.: Implementation of application-specific DSP for OFDM systems. In: Proceedings of IEEE International Conference on Circuits and Systems (ISCAS), pp. 665–668 (2004)

  34. Yue, H., Lai, M.-C., Dai, K., Wang, Z.-Y., Design of a configurable embedded processor architecture for DSP functions. In: Proceedings of IEEE ICPADS’05, pp. 27-31 (2005)

  35. Chattopadhyay, A., Ahmed, W., Karuri, K., Kammler, D., Leupers, R., Ascheid, G., Meyr, H.: Design space exploration of partially reconfigurable embedded processors. In: IEEE DATE’07, pp. 1–6 (2007)

  36. Peters, H., Sethuraman, R., Beric, A., Meuwissen, P., Balakrishnan, S., Pinto, C., Kruijtzer, W., Ernst, F., Alkadi, G., van Meerbergen, J., de Haan, G.: Application specific instruction-set processor template for motion estimation in video applications. IEEE Trans. Circ. aSyst. Video Technol 15, 508–527 (2005)

    Article  Google Scholar 

  37. Vogt, T., When, N.: A reconfigurable application specific instruction set processor for Viterbi and log-map decoding. In: IEEE Workshop on Signal Proceedings Systems Design and Implementation, pp. 142–147 (2006)

  38. Goossens, G., Lanneer, D., Geurts, W., Van Praet, J.: Design of ASIPs in multi-processor SoCs using the chess/checkers retargetable tool suite. In: IEEE International Symposium on System-on-Chip, 2006, pp. 1–4

  39. Saponara, S., Casula, M., Fanucci, L.: ASIP-based reconfigurable architectures for power-efficient and real-time image/video processing. J. Real Time Image Process. 3(3), 201–216 (2008)

    Article  Google Scholar 

  40. Fanucci, L., Saponara, S., Bertini, L.: A parametric VLSI architecture for video motion estimation. Integration VLSI J. 31(1), 79–100 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This research was partially supported by grants of the University of Trieste and of the Regione Friuli-Venezia Giulia within the “Eladin 2” project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Saponara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marsi, S., Saponara, S. Integrated video motion estimator with Retinex-like pre-processing for robust motion analysis in automotive scenarios: algorithmic and real-time architecture design. J Real-Time Image Proc 5, 275–289 (2010). https://doi.org/10.1007/s11554-009-0148-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-009-0148-7

Keywords

Navigation