Skip to main content

Advertisement

Log in

Deep learning-based age estimation from chest CT scans

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Medical imaging can be used to estimate a patient’s biological age, which may provide complementary information to clinicians compared to chronological age. In this study, we aimed to develop a method to estimate a patient’s age based on their chest CT scan. Additionally, we investigated whether chest CT estimated age is a more accurate predictor of lung cancer risk compared to chronological age.

Methods

To develop our age prediction model, we utilized composite CT images and Inception-ResNet-v2. The model was trained, validated, and tested on 13,824 chest CT scans from the National Lung Screening Trial, with 91% for training, 5% for validation, and 4% for testing. Additionally, we independently tested the model on 1849 CT scans collected locally. To assess chest CT estimated age as a risk factor for lung cancer, we computed the relative lung cancer risk between two groups. Group 1 consisted of individuals assigned a CT age older than their chronological age, while Group 2 comprised those assigned a CT age younger than their chronological age.

Results

Our analysis revealed a mean absolute error of 1.84 years and a Pearson’s correlation coefficient of 0.97 for our local data when comparing chronological age with the estimated CT age. The model showed the most activation in the area associated with the lungs during age estimation. The relative risk for lung cancer was 1.82 (95% confidence interval, 1.65–2.02) for individuals assigned a CT age older than their chronological age compared to those assigned a CT age younger than their chronological age.

Conclusion

Findings suggest that chest CT age captures some aspects of biological aging and may be a more accurate predictor of lung cancer risk than chronological age. Future studies with larger and more diverse patients are required for the generalization of the interpretations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. United Nations (2019) Department of Economic and Social Affairs, Population Division, “World Population Ageing 2019: Highlights”, United Nations, New York, NY, USA

  2. Greulich WW, Pyle SI (1959) Radiographic atlas of skeletal development of the hand and wrist, 2nd edn. Stanford University Press, USA

    Google Scholar 

  3. De Donno A, Angrisani C, Mele F, Introna F, Santoro V (2021) Dental age estimation: Demirjian’s versus the other methods in different populations: a literature review. Med Sci Law 61(1_suppl):125–129. https://doi.org/10.1177/0025802420934253

    Article  PubMed  Google Scholar 

  4. Mishra S, Beheshti I, Khanna P (2021) A review of neuroimaging-driven brain age estimation for identification of brain disorders and health conditions. IEEE Rev Biomed Eng. https://doi.org/10.1109/RBME.2021.3107372

    Article  Google Scholar 

  5. Cavallo F, Mohn A, Chiarelli F, Giannini C (2021) Evaluation of bone age in children: a mini-review. Front Pediatr 9:580314. https://doi.org/10.3389/fped.2021.580314

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dallora AL, Anderberg P, Kvist O, Mendes E, Ruiz SD, Berglund JS (2019) Bone age assessment with various machine learning techniques: a systematic literature review and meta-analysis. PLoS ONE. https://doi.org/10.1371/journal.pone.0220242

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pham CV, Lee SJ, Kim SY, Lee S, Kim SH, Kim HS (2021) Age estimation based on 3D post-mortem computed tomography images of mandible and femur using convolutional neural networks. PLoS ONE. https://doi.org/10.1371/journal.pone.0251388

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hartmann A, Hartmann C, Secci R, Hermann A, Fuellen G, Walter M (2021) Ranking biomarkers of aging by citation profiling and effort scoring. Front Genet 12:686320. https://doi.org/10.3389/fgene.2021.686320

    Article  PubMed  PubMed Central  Google Scholar 

  9. Steptoe A, Zaninotto P (2020) Lower socioeconomic status and the acceleration of aging: an outcome-wide analysis. PNAS 117(26):14911–14917. https://doi.org/10.1073/pnas.1915741117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hamczyk MR, Nevado RM, Barettino A, Fuster V, Andrés V (2020) Biological versus chronological aging: JACC focus seminar. J Am Coll Cardiol 75(8):919–930. https://doi.org/10.1016/j.jacc.2019.11.062

    Article  CAS  PubMed  Google Scholar 

  11. Maltoni R, Ravaioli S, Bronte G, Mazza M, Cerchione C, Massa I, Balzi W, Cortesi M, Zanoni M, Bravaccini S (2022) Chronological age or biological age: What drives the choice of adjuvant treatment in elderly breast cancer patients? Transl Oncol 15(1):101300. https://doi.org/10.1016/j.tranon.2021.101300

    Article  CAS  PubMed  Google Scholar 

  12. Niccoli T, Partridge L (2021) Ageing as a risk factor for disease. Curr Biol 22(17):741–752. https://doi.org/10.1016/j.cub.2012.07.024

    Article  CAS  Google Scholar 

  13. Salameh Y, Bejaoui Y, El Hajj N (2020) DNA methylation biomarkers in aging and age-related diseases. Front Genet 11:5400–5413. https://doi.org/10.3389/fgene.2020.00171

    Article  CAS  Google Scholar 

  14. Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21:3972–3981. https://doi.org/10.1038/sj.onc.1205651

    Article  CAS  Google Scholar 

  15. Yang CY, Pan YJ, Chou Y, Yang CJ, Kao CC, Huang KC, Chang JS, Chen HC, Kuo KH (2021) Using deep neural networks for predicting age and sex in healthy adult chest radiographs. J Clin Med 10(19):4431. https://doi.org/10.3390/jcm10194431

    Article  PubMed  PubMed Central  Google Scholar 

  16. Raghu VK, Weiss J, Hoffmann U, Aerts HJWL, Lu MT (2021) Deep learning to estimate biological age from chest radiographs. JACC Cardiovasc Imaging 14(11):2226–2236. https://doi.org/10.1016/j.jcmg.2021.01.008

    Article  PubMed  Google Scholar 

  17. Ieki H, Ito K, Saji M, Kawakami R, Nagatomo Y, Takada K, Kariyasu T, Machida H, Koyama S, Yoshida H, Kurosawa R, Matsunaga H, Miyazawa K, Ozaki K, Onouchi Y, Katsushika S, Matsuoka R, Shinohara H, Yamaguchi T, Kodera S, Higashikuni Y, Fujiu K, Akazawa H, Iguchi N, Isobe M, Yoshikawa T, Komuro I (2022) Deep learning-based age estimation from chest X-rays indicates cardiovascular prognosis. Commun Med. https://doi.org/10.1038/s43856-022-00220-6

    Article  PubMed  PubMed Central  Google Scholar 

  18. Solomou C, Kazakov D (2021) Utilizing Chest X-rays for age prediction and gender classification. In: 4th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), pp 356–361. https://doi.org/10.1109/ISRITI54043.2021.9702796

  19. Sabottke CF, Breaux MA, Spieler BM (2020) Estimation of age in unidentified patients via chest radiography using convolutional neural network regression. Emerg Radiol 27(5):463–468. https://doi.org/10.1007/s10140-020-01782-5

    Article  PubMed  Google Scholar 

  20. Karargyris A, Kashyap S, Wu JT, Sharma A, Moradi M, Syeda-Mahmood T (2019) Age prediction using a large chest x-ray dataset. SPIE Med Imaging. https://doi.org/10.1117/12.2512922

    Article  Google Scholar 

  21. Adleberg J, Wardeh A, Doo FX, Marinelli B, Cook TS, Mendelson DS, Kagen A (2022) Predicting patient demographics from chest radiographs with deep learning. J Am Coll Radiol 19(10):1151–1161. https://doi.org/10.1016/j.jacr.2022.06.008

    Article  PubMed  Google Scholar 

  22. Beek EJRV, Mirsadraee S, Murchison JT (2015) Lung cancer screening: Computed tomography or chest radiographs? World J Radiol 7(8):189–193. https://doi.org/10.4329/wjr.v7.i8.189

    Article  PubMed  PubMed Central  Google Scholar 

  23. National Lung Screening Trial Research Team (2011) The national lung screening trial: overview and study design. Radiology 258(1):243–253. https://doi.org/10.1148/radiol.10091808

    Article  PubMed Central  Google Scholar 

  24. Jollife IT, Cadima J (2016) Principal component analysis: a review and recent developments. Phil Trans R Soc A 374:20150202. https://doi.org/10.1098/rsta.2015.0202

    Article  Google Scholar 

  25. Luo G, Chen G, Tian L, Qin K, Qian SE (2016) Minimum noise fraction versus principal component analysis as a preprocessing step for hyperspectral imagery denoising. Can J Remote Sens 42(2):106–116. https://doi.org/10.1080/07038992.2016.1160772

    Article  CAS  Google Scholar 

  26. Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 38(8):1627–1639. https://doi.org/10.1021/ac60214a047

    Article  Google Scholar 

  27. Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-ResNet and the impact of residual connections on learning. Proc AAAI Conf Artif Intell. https://doi.org/10.1609/aaai.v31i1.11231

    Article  Google Scholar 

  28. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) ImageNet: A large-scale hierarchical image database. In: IEEE conference on computer vision and pattern recognition, Miami, pp 248–255, https://doi.org/10.1109/CVPR.2009.5206848

  29. Beheshti I, Nugent S, Potvin O, Duchesne S (2019) Bias-adjustment in neuroimaging-based brain age frameworks: a robust scheme. Neuroimage Clin 24:102063. https://doi.org/10.1016/j.nicl.2019.102063

    Article  PubMed  PubMed Central  Google Scholar 

  30. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2019) Grad-CAM: visual explanations from deep networks via gradient-based localization. Int J Comput Vis 128:336–359. https://doi.org/10.1007/s11263-019-01228-7

    Article  Google Scholar 

  31. Nguyen HQ, Lam K, Le LT, Pham HH, Tran DQ, Nguyen DB, Le DD, Pham CM, Tong HTT, Dinh DH, Do CD, Doan LT, Nguyen CN, Nguyen BT, Nguyen QV, Hoang AD, Phan HN, Nguyen AT, Ho PH, Ngo DT, Nguyen NT, Nguyen NT, Dao M, Vu V (2022) VinDr-CXR: an open dataset of chest X-rays with radiologist’s annotations. Sci Data 9(1):429. https://doi.org/10.1038/s41597-022-01498-w

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cruz BGS, Bossa MN, Sölter J, Husch AD (2021) Public Covid-19 X-ray datasets and their impact on model bias—a systematic review of a significant problem. Med Image Anal 74:102225. https://doi.org/10.1016/j.media.2021.102225

    Article  Google Scholar 

  33. Çallı E, Sogancioglu E, van Ginneken B, Leeuwen KGV, Murphy K (2021) Deep learning for chest X-ray analysis: a survey. Med Image Anal 72:102125. https://doi.org/10.1016/j.media.2021.102125

    Article  PubMed  Google Scholar 

  34. Hägg S, Jylhävä J (2020) Should we invest in biological age predictors to treat colorectal cancer in older adults? Eur J Surg Oncol 46(3):316–320. https://doi.org/10.1016/j.ejso.2019.11.003

    Article  PubMed  Google Scholar 

  35. Yang Y, Zha K, Chen YC, Wang H, Katabi D (2021) Delving into deep imbalanced regression. PMLR. https://doi.org/10.48550/arXiv.2102.09554

    Article  Google Scholar 

  36. Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM (2021) ChestX-ray: hospital-scale chest x-ray database and benchmarks on weakly supervised classification and localization of common thorax diseases. Deep learning and convolutional neural networks for medical imaging and clinical informatics. Advances in computer vision and pattern recognition. Springer, Cham. https://doi.org/10.1007/978-3-030-13969-8_18

  37. Irvin J, Rajpurkar P, Ko M, Yu Y, Ciurea-Ilcus S, Chute C, Marklund H, Haghgoo B, Ball R, Shpanskaya K, Seekins J, Mong DA, Halabi SS, Sandberg JK, Jones R, Larson DB, Langlotz CP, Patel BN, Lungren MP, Ng AY (2019) CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. Proc AAAI Conf Artif Intell 33(01):590–597. https://doi.org/10.1609/aaai.v33i01.3301590

    Article  Google Scholar 

  38. Cohen JP, Morrison P, Dao L (2020) COVID-19 image data collection. arXiv. https://doi.org/10.48550/arXiv.2003.11597

  39. Bustos A, Pertusa A, Salinas JM, Iglesia-Vayá MDL (2020) Padchest: a large chest x-ray image dataset with multi-label annotated reports. Med Image Anal. https://doi.org/10.1016/j.media.2020.101797

    Article  PubMed  Google Scholar 

  40. Oken MM, Hocking WG, Kvale PA, for the PLCO Project Team et al (2011) Screening by chest radiograph and lung cancer mortality: the Prostate, Lung, Colorectal, and Ovarian (PLCO) randomized trial. JAMA 306(17):1865–1873. https://doi.org/10.1001/jama.2011.1591

    Article  CAS  PubMed  Google Scholar 

  41. Prorok PC, Andriole GL, Bresalier RS, for Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial Project Team et al (2000) Design of the Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening trial. Control Clin Trials 21(6 Suppl):273–309. https://doi.org/10.1016/s0197-2456(00)00098-2

    Article  Google Scholar 

  42. Johnson AEW, Pollard TJ, Berkowitz SJ, Greenbaum NR, Lungren MP, Deng CY, Mark RG, Horng S (2019) MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports. Sci Data 6:317. https://doi.org/10.1038/s41597-019-0322-0

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding support for this research from the Saskatchewan Health Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghazal Azarfar.

Ethics declarations

Conflict of interest

The authors (G.A., S.K., S.J.A, and P.S.B) declare no conflict of interest.

Ethical approval

This study was approved by the University of Saskatchewan Research Ethics Board. A waiver of individual patient consent was granted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 758 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azarfar, G., Ko, SB., Adams, S.J. et al. Deep learning-based age estimation from chest CT scans. Int J CARS 19, 119–127 (2024). https://doi.org/10.1007/s11548-023-02989-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-023-02989-w

Keywords

Navigation