Skip to main content

Advertisement

Log in

Performance of deep learning-based autodetection of arterial stenosis on head and neck CT angiography: an independent external validation study

  • Computed Tomography
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

To externally validate the performance of automated stenosis detection on head and neck CT angiography (CTA) and investigate the impact factors using an independent bi-center dataset with digital subtraction angiography (DSA) as the ground truth.

Material and methods

Patients who underwent head and neck CTA and DSA between January 2019 and December 2021 were retrospectively included. The degree of stenosis was automatically evaluated using CerebralDoc based on CTA. The performance of CerebralDoc across levels (per-patient, per-region, per-vessel, and per-segment) and thresholds (≥ 50%, ≥ 70%, and = 100%) was evaluated. Logistic regression was performed to identify independent factors associated with false negative results.

Results

296 patients were analyzed. Specificity across levels and thresholds was high, exceeding 92%. The area under the curve ranged from poor (0.615, 95% CI: 0.544, 0.686; at the region-based analysis for stenosis ≥ 70%) to excellent (0.945, 95% CI: 0.905, 0.985; at the patient-based analysis for stenosis ≥ 50%). Sensitivity ranged from 0.714 (95% CI: 0.675, 0.750) at the segment-based analysis for stenosis ≥ 70% to 0.895 (95% CI: 0.849, 0.919) at the patient-based analysis for stenosis ≥ 50%. The multiple logistic regression analysis revealed that false negative results were primarily more likely to specific stenosis locations (particularly the M2 segment and skull base segment of the internal carotid artery) and occlusion.

Conclusions

CerebralDoc has the potential to automated stenosis detection on head and neck CTA, but further efforts are needed to optimize its performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data will be available to be shared upon publication by correspondence with KL (likunhua@hospital.cqmu.edu.cn).

Abbreviations

AI:

Artificial intelligence

AS:

Arterial stenosis

AUC:

Area under the curve

CI:

Confidence interval

CTA:

CT angiography

DSA:

Digital subtraction angiography

PACS:

Picture archiving and communication system

References

  1. Gutierrez J, Turan TN, Hoh BL et al (2022) Intracranial atherosclerotic stenosis: risk factors, diagnosis, and treatment. Lancet Neurol. https://doi.org/10.1016/s1474-4422(21)00376-8

    Article  PubMed  Google Scholar 

  2. Bonati LH, Jansen O, de Borst GJ et al (2022) Management of atherosclerotic extracranial carotid artery stenosis. Lancet Neurol 21(3):273–283. https://doi.org/10.1016/s1474-4422(21)00359-8

    Article  PubMed  Google Scholar 

  3. Li J, Wu H, Hang H et al (2022) Carotid vulnerable plaque coexisting with cerebral small vessel disease and acute ischemic stroke: a Chinese atherosclerosis risk evaluation study. Eur Radiol 32(9):6080–6089. https://doi.org/10.1007/s00330-022-08757-9

    Article  CAS  PubMed  Google Scholar 

  4. Wu S, Wu B, Liu M et al (2019) Stroke in China: advances and challenges in epidemiology, prevention, and management. Lancet Neurol 18(4):394–405. https://doi.org/10.1016/s1474-4422(18)30500-3

    Article  PubMed  Google Scholar 

  5. Nardi V, Benson J, Bois MC et al (2022) Carotid plaques from symptomatic patients with mild stenosis is associated with intraplaque hemorrhage. Hypertension 79(1):271–282. https://doi.org/10.1161/hypertensionaha.121.18128

    Article  CAS  PubMed  Google Scholar 

  6. Howard DPJ, Gaziano L, Rothwell PM (2021) Risk of stroke in relation to degree of asymptomatic carotid stenosis: a population-based cohort study, systematic review, and meta-analysis. Lancet Neurol 20(3):193–202. https://doi.org/10.1016/s1474-4422(20)30484-1

    Article  PubMed  PubMed Central  Google Scholar 

  7. Libby P (2021) The changing landscape of atherosclerosis. Nature 592(7855):524–533. https://doi.org/10.1038/s41586-021-03392-8

    Article  CAS  PubMed  Google Scholar 

  8. Wardlaw JM, Mair G, von Kummer R et al (2022) Accuracy of automated computer-aided diagnosis for stroke imaging: a critical evaluation of current evidence. Stroke. https://doi.org/10.1161/strokeaha.121.036204

    Article  PubMed  PubMed Central  Google Scholar 

  9. Torres C, Lum C, Puac-Polanco P et al (2021) Differentiating carotid free-floating thrombus from atheromatous plaque using intraluminal filling defect length on CTA: a validation study. Neurology 97(8):e785–e793. https://doi.org/10.1212/wnl.0000000000012368

    Article  CAS  PubMed  Google Scholar 

  10. Luijten SPR, Wolff L, Duvekot MHC et al (2022) Diagnostic performance of an algorithm for automated large vessel occlusion detection on CT angiography. J Neurointerv Surg 14(8):794–798. https://doi.org/10.1136/neurintsurg-2021-017842

    Article  PubMed  Google Scholar 

  11. Fu F, Shan Y, Yang G et al (2023) Deep learning for head and neck CT angiography: stenosis and plaque classification. Radiology. https://doi.org/10.1148/radiol.220996

    Article  PubMed  Google Scholar 

  12. Powers WJ, Rabinstein AA, Ackerson T et al (2019) Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the american heart association/American stroke association. Stroke 50(12):e344–e418. https://doi.org/10.1161/STR.0000000000000211

    Article  PubMed  Google Scholar 

  13. Nam JG, Hwang EJ, Kim J et al (2023) AI improves nodule detection on chest radiographs in a health screening population: a randomized controlled trial. Radiology. https://doi.org/10.1148/radiol.221894

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lauritzen AD, Rodríguez-Ruiz A, von Euler-Chelpin MC et al (2022) An artificial intelligence-based mammography screening protocol for breast cancer: outcome and radiologist workload. Radiology. https://doi.org/10.1148/radiol.210948

    Article  PubMed  Google Scholar 

  15. Yang J, Xie M, Hu C et al (2021) Deep learning for detecting cerebral aneurysms with CT angiography. Radiology 298(1):155–163. https://doi.org/10.1148/radiol.2020192154

    Article  PubMed  Google Scholar 

  16. Venkadesh KV, Setio AAA, Schreuder A et al (2021) Deep learning for malignancy risk estimation of pulmonary nodules detected at low-dose screening CT. Radiology. https://doi.org/10.1148/radiol.2021204433

    Article  PubMed  Google Scholar 

  17. Chen W, Liu X, Li K et al (2021) A deep-learning model for identifying fresh vertebral compression fractures on digital radiography. Eur Radiol. https://doi.org/10.1007/s00330-021-08247-4

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chilamkurthy S, Ghosh R, Tanamala S et al (2018) Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet 392(10162):2388–2396. https://doi.org/10.1016/s0140-6736(18)31645-3

    Article  PubMed  Google Scholar 

  19. Zreik M, van Hamersvelt R, Wolterink J et al (2019) A recurrent CNN for automatic detection and classification of coronary artery plaque and stenosis in coronary CT angiography. IEEE Trans Med Imaging 38(7):1588–1598. https://doi.org/10.1109/tmi.2018.2883807

    Article  PubMed  Google Scholar 

  20. Stib MT, Vasquez J, Dong MP et al (2020) Detecting large vessel occlusion at multiphase CT angiography by using a deep convolutional neural network. Radiology 297(3):640–649. https://doi.org/10.1148/radiol.2020200334

    Article  PubMed  Google Scholar 

  21. Elijovich L, Dornbos Iii D, Nickele C et al (2022) Automated emergent large vessel occlusion detection by artificial intelligence improves stroke workflow in a hub and spoke stroke system of care. J Neurointerv surg 14(7):704–708. https://doi.org/10.1136/neurintsurg-2021-017714

    Article  PubMed  Google Scholar 

  22. Dehkharghani S, Lansberg M, Venkatsubramanian C et al (2021) High-performance automated anterior circulation CT angiographic clot detection in acute stroke: a multireader comparison. Radiology 298(3):665–670. https://doi.org/10.1148/radiol.2021202734

    Article  PubMed  Google Scholar 

  23. Amukotuwa SA, Straka M, Smith H et al (2019) Automated detection of intracranial large vessel occlusions on computed tomography angiography: a single center experience. Stroke 50(10):2790–2798. https://doi.org/10.1161/strokeaha.119.026259

    Article  CAS  PubMed  Google Scholar 

  24. Amukotuwa SA, Straka M, Dehkharghani S et al (2019) Fast automatic detection of large vessel occlusions on CT angiography. Stroke 50(12):3431–3438. https://doi.org/10.1161/strokeaha.119.027076

    Article  PubMed  PubMed Central  Google Scholar 

  25. Slieker RC, van der Heijden A, Siddiqui MK et al (2021) Performance of prediction models for nephropathy in people with type 2 diabetes: systematic review and external validation study. BMJ 374:n2134. https://doi.org/10.1136/bmj.n2134

    Article  PubMed  PubMed Central  Google Scholar 

  26. Poorthuis MHF, Herings RAR, Dansey K et al (2021) External validation of risk prediction models to improve selection of patients for carotid endarterectomy. Stroke. https://doi.org/10.1161/strokeaha.120.032527

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mair G, White P, Bath PM et al (2022) Artificial Intelligence software to interpret brain computed tomography in patients with stroke: external validation of e-ASPECTS software. Ann Neurol. https://doi.org/10.1002/ana.26495

    Article  PubMed  PubMed Central  Google Scholar 

  28. de Jong VMT, Rousset RZ, Antonio-Villa NE et al (2022) Clinical prediction models for mortality in patients with covid-19: external validation and individual participant data meta-analysis. BMJ 378:e069881. https://doi.org/10.1136/bmj-2021-069881

    Article  PubMed  Google Scholar 

  29. Nguyen-Huynh MN, Wintermark M, English J et al (2008) How accurate is CT angiography in evaluating intracranial atherosclerotic disease? Stroke 39(4):1184–1188. https://doi.org/10.1161/strokeaha.107.502906

    Article  PubMed  Google Scholar 

  30. Budoff M, Dowe D, Jollis J et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter accuracy (assessment by coronary computed tomographic angiography of individuals undergoing invasive coronary angiography) trial. J Am Coll Cardiol 52(21):1724–1732. https://doi.org/10.1016/j.jacc.2008.07.031

    Article  PubMed  Google Scholar 

  31. Ranganathan P, Pramesh CS, Aggarwal R (2017) Common pitfalls in statistical analysis: logistic regression. Perspect Clin Res 8(3):148–151. https://doi.org/10.4103/picr.PICR_87_17

    Article  PubMed  PubMed Central  Google Scholar 

  32. Matsoukas S, Morey J, Lock G et al (2023) AI software detection of large vessel occlusion stroke on CT angiography: a real-world prospective diagnostic test accuracy study. J Neurointerv Surg 15(1):52–56. https://doi.org/10.1136/neurintsurg-2021-018391

    Article  PubMed  Google Scholar 

  33. Sheth SA, Giancardo L, Colasurdo M et al (2022) Machine learning and acute stroke imaging. J Neurointerv Surg. https://doi.org/10.1136/neurintsurg-2021-018142

    Article  PubMed  Google Scholar 

  34. Leslie-Mazwi TM, Lev MH (2020) Towards artificial intelligence for clinical stroke care. Nat Rev Neurol 16(1):5–6. https://doi.org/10.1038/s41582-019-0287-9

    Article  PubMed  Google Scholar 

  35. McKinney SM, Sieniek M, Godbole V et al (2020) International evaluation of an AI system for breast cancer screening. Nature 577(7788):89–94. https://doi.org/10.1038/s41586-019-1799-6

    Article  CAS  PubMed  Google Scholar 

  36. Murray NM, Unberath M, Hager GD et al (2020) Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: a systematic review. J Neurointerv Surg 12(2):156–164. https://doi.org/10.1136/neurintsurg-2019-015135

    Article  PubMed  Google Scholar 

  37. Liebeskind DS, Wardlaw JM (2023) Imaging advances in stroke: use of advanced neurovascular imaging or disruptive innovation with artificial intelligence? Stroke. https://doi.org/10.1161/strokeaha.123.042308

    Article  PubMed  Google Scholar 

  38. Yahav-Dovrat A, Saban M, Merhav G et al (2021) Evaluation of artificial intelligence-powered identification of large-vessel occlusions in a comprehensive stroke center. AJNR Am J Neuroradiol 42(2):247–254. https://doi.org/10.3174/ajnr.A6923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fasen B, Heijboer RJJ, Hulsmans FH et al (2020) CT angiography in evaluating large-vessel occlusion in acute anterior circulation ischemic stroke: factors associated with diagnostic error in clinical practice. AJNR Am J Neuroradiol 41(4):607–611. https://doi.org/10.3174/ajnr.A6469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fu F, Wei J, Zhang M et al (2020) Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network. Nat Commun 11(1):4829. https://doi.org/10.1038/s41467-020-18606-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Choi CG, Lee DH, Lee JH et al (2007) Detection of intracranial atherosclerotic steno-occlusive disease with 3D time-of-flight magnetic resonance angiography with sensitivity encoding at 3T. AJNR Am J Neuroradiol 28(3):439–446

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Chongqing medical scientific research project (Joint project of Chongqing Health Commission and Science and Technology Bureau) under Grant No.2023MSXM014.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. KL devised the study protocol and is the principal investigator. YY, XH, and DG participated in the study design. SN developed the methodology. XW acquired funding. KL, YY, XH, and XW conducted the data and statistical analyses. KL, DG, YY, and XH contributed to data interpretation. YY and XH drafted the initial manuscript, which was further revised by KL. All authors approved the final version of the manuscript. KL, DG, and XW have directly accessed and verified the underlying data reported in the manuscript.

Corresponding author

Correspondence to Kunhua Li.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

The research was approved by the Ethics Committee of the Second Affiliated Hospital of Chongqing Medical University.

Consent to participate

Ethics committee has confirmed that no consent to participate is required.

Consent to publish

The authors affirm that human research participants provided informed consent for publication of the data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Huan, X., Guo, D. et al. Performance of deep learning-based autodetection of arterial stenosis on head and neck CT angiography: an independent external validation study. Radiol med 128, 1103–1115 (2023). https://doi.org/10.1007/s11547-023-01683-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-023-01683-w

Keywords

Navigation