Skip to main content

Advertisement

Log in

A narrative review on current imaging applications of artificial intelligence and radiomics in oncology: focus on the three most common cancers

  • Abdominal Radiology
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

The use of artificial intelligence (AI) and radiomics in the healthcare setting to advance disease diagnosis and management and facilitate the creation of new therapeutics is gaining popularity. Given the vast amount of data collected during cancer therapy, there is significant concern in leveraging the algorithms and technologies available with the underlying goal of improving oncologic care. Radiologists will attain better precision and effectiveness with the advent of AI technology, making machine-assisted medical services a valuable and important option for future oncologic medical care. As a result, it is critical to figure out which specific radiology activities are best positioned to gain from AI and radiomics models and methods of oncologic imaging, while also considering the algorithms' capabilities and constraints. Our purpose is to overview the current evidence and future prospects of AI and radiomics algorithms used in oncologic imaging efforts with an emphasis on the three most frequent cancers worldwide, i.e., lung cancer, breast cancer and colorectal cancer. We discuss how AI and radiomics could be used to detect and characterize cancers and assess therapy response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

3D:

Three-dimensional

ADC:

Apparent diffusion coefficient

AI:

Artificial intelligence

ANN:

Artificial neural network

ASD:

Average surface distance

AUC:

Area under the ROC curve

BC:

Breast cancer

BRCA1/2:

Breast cancer gene ½

C-index:

Concordance index

CAD:

Computer-aided detection

CNN:

Convolutional neural network

CRC:

Colorectal cancer

CT:

Computed tomography

CTC:

Computed tomography colonography

DBT:

Digital breast tomosynthesis

DL:

Deep learning

DSC:

Dice similarity coefficient

DWI:

Diffusion weighted imaging

EGFR( +)/EGFR( −):

Epidermal growth factor receptor positive/negative

KRAS:

Kirsten rat sarcoma viral oncogene homolog

HER-2:

Human epidermal growth factor receptor 2

HR:

Hazard ratio

LARC:

Locally advanced rectal cancer

LC:

Lung cancer

ML:

Machine learning

MRI:

Magnetic resonance imaging

nChRT:

Neoadjuvant chemoradiotherapy

NLST:

National lung screening trial

NSCLC:

Non-small cell lung cancer

OR:

Odds ratio

pCR:

Pathological complete response

PD-1:

Programmed cell death protein 1

PD-L1:

Programmed cell death ligand 1

RR:

Recall rate

RT:

Radiation therapy

TKIs:

Tyrosine kinase inhibitors

References

  1. Lakhani P, Prater AB, Hutson RK et al (2018) Machine learning in radiology: applications beyond image interpretation. J Am Coll Radiol 15:350–359. https://doi.org/10.1016/j.jacr.2017.09.044

    Article  PubMed  Google Scholar 

  2. Pesapane F, Codari M, Sardanelli F (2018) Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine. Eur Radiol Exp 2:35. https://doi.org/10.1186/s41747-018-0061-6

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lee JG, Jun S, Cho YW et al (2017) Deep learning in medical imaging: general overview. Korean J Radiol 18:570–584. https://doi.org/10.3348/kjr.2017.18.4.570

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kourou K, Exarchos TP, Exarchos KP et al (2015) Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 13:8–17. https://doi.org/10.1016/j.csbj.2014.11.005

    Article  CAS  PubMed  Google Scholar 

  5. Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539

    Article  CAS  PubMed  Google Scholar 

  6. Erickson BJ, Korfiatis P, Akkus Z, Kline TL (2017) Machine learning for medical imaging. Radiographics 37:505–515. https://doi.org/10.1148/rg.2017160130

    Article  PubMed  Google Scholar 

  7. Russakovsky O, Deng J, Su H et al (2015) Imagenet large scale visual recognition challenge. Int J Comput Vis 115:211–252. https://doi.org/10.1007/s11263-015-0816-y

    Article  Google Scholar 

  8. Bi WL, Hosny A, Schabath MB et al (2019) Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin 69:127–157. https://doi.org/10.3322/caac.21552

    Article  PubMed  PubMed Central  Google Scholar 

  9. Aerts HJWL, Velazquez ER, Leijenaar RTH et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:1–9. https://doi.org/10.1038/ncomms5006

    Article  CAS  Google Scholar 

  10. Zhu B, Liu JZ, Cauley SF et al (2018) Image reconstruction by domain-transform manifold learning. Nature 555:487–492. https://doi.org/10.1038/nature25988

    Article  CAS  PubMed  Google Scholar 

  11. Nardone V, Reginelli A, Grassi R et al (2021) Delta radiomics: a systematic review. Radiol med 126:1571–1583. https://doi.org/10.1007/s11547-021-01436-7

    Article  PubMed  Google Scholar 

  12. Scapicchio C, Gabelloni M, Barucci A et al (2021) A deep look into radiomics. Radiol med 126:1296–1311. https://doi.org/10.1007/s11547-021-01389-x

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  14. Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, Gareen IF, Gatsonis C, Marcus PM, Sicks JD (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365:395–409. https://doi.org/10.1056/NEJMoa1102873

    Article  PubMed  Google Scholar 

  15. Nam JG, Park S, Hwang EJ et al (2019) Development and validation of deep learning–based automatic detection algorithm for malignant pulmonary nodules on chest radiographs. Radiology 290:218–228. https://doi.org/10.1148/radiol.2018180237

    Article  PubMed  Google Scholar 

  16. Masood A, Sheng B, Li P et al (2018) Computer-Assisted Decision Support System in Pulmonary Cancer detection and stage classification on CT images. J Biomed Inform 79:117–128. https://doi.org/10.1016/j.jbi.2018.01.005

    Article  PubMed  Google Scholar 

  17. Ma J, Zhou Z, Ren Y et al (2017) Computerized detection of lung nodules through radiomics. Med Phys 44:4148–4158. https://doi.org/10.1002/mp.12331

    Article  PubMed  Google Scholar 

  18. Weikert T, Akinci D’Antonoli T, Bremerich J et al (2019) Evaluation of an AI-powered lung nodule algorithm for detection and 3d segmentation of primary lung tumors. Contrast Med Mol Imaging 2019:1545747. https://doi.org/10.1155/2019/1545747

    Article  CAS  Google Scholar 

  19. Snoeckx A, Reyntiens P, Desbuquoit D et al (2018) Evaluation of the solitary pulmonary nodule: size matters, but do not ignore the power of morphology. Insights Imaging 9:73–86. https://doi.org/10.1007/s13244-017-0581-2

    Article  PubMed  Google Scholar 

  20. Venugopal VK, Vaidhya K, Murugavel M et al (2020) Unboxing AI - radiological insights into a deep neural network for lung nodule characterization. Acad Radiol 27:88–95. https://doi.org/10.1016/j.acra.2019.09.015

    Article  PubMed  Google Scholar 

  21. Xu Y, Lu L, Lin-Ning E et al (2019) Application of radiomics in predicting the malignancy of pulmonary nodules in different sizes. Am J Roentgenol 213:1213–1220. https://doi.org/10.2214/AJR.19.21490

    Article  Google Scholar 

  22. Gong J, Liu J, Hao W et al (2020) A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT images. Eur Radiol 30:1847–1855. https://doi.org/10.1007/s00330-019-06533-w

    Article  PubMed  Google Scholar 

  23. Uthoff J, Stephens MJ, Newell JD et al (2019) Machine learning approach for distinguishing malignant and benign lung nodules utilizing standardized perinodular parenchymal features from CT. Med Phys 46:3207–3216. https://doi.org/10.1002/mp.13592

    Article  PubMed  Google Scholar 

  24. Bracci S, Dolciami M, Trobiani C et al (2021) Quantitative CT texture analysis in predicting PD-L1 expression in locally advanced or metastatic NSCLC patients. Radiol med 126:1425–1433. https://doi.org/10.1007/s11547-021-01399-9

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sun R, Limkin EJ, Vakalopoulou M et al (2018) A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol 19:1180–1191. https://doi.org/10.1016/S1470-2045(18)30413-3

    Article  CAS  PubMed  Google Scholar 

  26. Wang H, Schabath MB, Liu Y et al (2016) Association between computed tomographic features and kirsten rat sarcoma viral oncogene mutations in patients with stage i lung adenocarcinoma and their prognostic value. Clin Lung Cancer 17:271–278. https://doi.org/10.1016/j.cllc.2015.11.002

    Article  CAS  PubMed  Google Scholar 

  27. Rios Velazquez E, Parmar C, Liu Y et al (2017) Somatic mutations drive distinct imaging phenotypes in lung cancer. Cancer Res 77:3922–3930. https://doi.org/10.1158/0008-5472.CAN-17-0122

    Article  CAS  PubMed  Google Scholar 

  28. Agazzi GM, Ravanelli M, Roca E et al (2021) CT texture analysis for prediction of EGFR mutational status and ALK rearrangement in patients with non-small cell lung cancer. Radiol Med 126:786–794. https://doi.org/10.1007/s11547-020-01323-7

    Article  PubMed  Google Scholar 

  29. Bak SH, Park H, Sohn I et al (2019) Prognostic impact of longitudinal monitoring of radiomic features in patients with advanced non-small cell lung cancer. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-45117-y

    Article  CAS  Google Scholar 

  30. Trebeschi S, Drago SG, Birkbak NJ et al (2019) Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers. Ann Oncol 30:998–1004. https://doi.org/10.1093/annonc/mdz108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fave X, Zhang L, Yang J et al (2017) Delta-radiomics features for the prediction of patient outcomes in non-small cell lung cancer. Sci Rep 7:588. https://doi.org/10.1038/s41598-017-00665-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kohli A, Jha S (2018) Why CAD failed in mammography. J Am Coll Radiol 15:535–537. https://doi.org/10.1016/j.jacr.2017.12.029

    Article  PubMed  Google Scholar 

  33. Girometti R, Linda A, Conte P et al (2021) Multireader comparison of contrast-enhanced mammography versus the combination of digital mammography and digital breast tomosynthesis in the preoperative assessment of breast cancer. Radiol med 126:1407–1414. https://doi.org/10.1007/s11547-021-01400-5

    Article  PubMed  Google Scholar 

  34. Bartolotta TV, Orlando A, Cantisani V et al (2018) Focal breast lesion characterization according to the BI-RADS US lexicon: role of a computer-aided decision-making support. Radiol med 123:498–506. https://doi.org/10.1007/s11547-018-0874-7

    Article  PubMed  Google Scholar 

  35. Rodríguez-Ruiz A, Krupinski E, Mordang JJ et al (2019) Detection of breast cancer with mammography: effect of an artificial intelligence support system. Radiology 290:305–314. https://doi.org/10.1148/radiol.2018181371

    Article  PubMed  Google Scholar 

  36. Rodriguez-Ruiz A, Lång K, Gubern-Merida A et al (2019) Stand-Alone Artificial intelligence for breast cancer detection in mammography: comparison with 101 radiologists. J Natl Cancer Inst 111:916–922. https://doi.org/10.1093/jnci/djy222

    Article  PubMed  PubMed Central  Google Scholar 

  37. McKinney SM, Sieniek M, Godbole V et al (2020) International evaluation of an AI system for breast cancer screening. Nature 577:89–94. https://doi.org/10.1038/s41586-019-1799-6

    Article  CAS  PubMed  Google Scholar 

  38. Samala RK, Chan HP, Hadjiiski L et al (2016) Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography. Med Phys 43:6654–6666. https://doi.org/10.1118/1.4967345

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mango VL, Morris EA, David Dershaw D et al (2015) Abbreviated protocol for breast MRI: Are multiple sequences needed for cancer detection? Eur J Radiol 84:65–70. https://doi.org/10.1016/j.ejrad.2014.10.004

    Article  PubMed  Google Scholar 

  40. Satake H, Ishigaki S, Ito R et al (2022) Radiomics in breast MRI: current progress toward clinical application in the era of artificial intelligence. Radiol med 127:39–56. https://doi.org/10.1007/s11547-021-01423-y

    Article  PubMed  Google Scholar 

  41. Dalmış MU, Vreemann S, Kooi T et al (2018) Fully automated detection of breast cancer in screening MRI using convolutional neural networks. J Med Imaging 5:014502. https://doi.org/10.1117/1.jmi.5.1.014502

    Article  Google Scholar 

  42. Cai H, Huang Q, Rong W et al (2019) Breast microcalcification diagnosis using deep convolutional neural network from digital mammograms. Comput Math Methods Med 2019:2717454. https://doi.org/10.1155/2019/2717454

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhou J, Luo LY, Dou Q et al (2019) Weakly supervised 3D deep learning for breast cancer classification and localization of the lesions in MR images. J Magn Reson Imaging 50:1144–1151. https://doi.org/10.1002/jmri.26721

    Article  PubMed  Google Scholar 

  44. Gierach GL, Li H, Loud JT et al (2014) Relationships between computer-extracted mammographic texture pattern features and BRCA1/2 mutation status: A cross-sectional study. Breast Cancer Res 16:424. https://doi.org/10.1186/s13058-014-0424-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou J, Tan H, Bai Y et al (2019) Evaluating the HER-2 status of breast cancer using mammography radiomics features. Eur J Radiol 121:108718. https://doi.org/10.1016/j.ejrad.2019.108718

    Article  PubMed  Google Scholar 

  46. Zhang Y, Zhu Y, Zhang K et al (2020) Invasive ductal breast cancer: preoperative predict Ki-67 index based on radiomics of ADC maps. Radiol Medica 125:109–116. https://doi.org/10.1007/s11547-019-01100-1

    Article  Google Scholar 

  47. Liu J, Sun D, Chen L et al (2019) Radiomics analysis of dynamic contrast-enhanced magnetic resonance imaging for the prediction of sentinel lymph node metastasis in breast cancer. Front Oncol 9:980. https://doi.org/10.3389/fonc.2019.00980

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tahmassebi A, Wengert GJ, Helbich TH et al (2019) Impact of machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy and survival outcomes in breast cancer patients. Invest Radiol 54:110–117. https://doi.org/10.1097/RLI.0000000000000518

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ha R, Chin C, Karcich J et al (2019) Prior to initiation of chemotherapy, can we predict breast tumor response? deep learning convolutional neural networks approach using a breast MRI tumor dataset. J Digit Imaging 32:693–701. https://doi.org/10.1007/s10278-018-0144-1

    Article  PubMed  Google Scholar 

  50. D’Angelo A, Orlandi A, Bufi E et al (2021) Automated breast volume scanner (ABVS) compared to handheld ultrasound (HHUS) and contrast-enhanced magnetic resonance imaging (CE-MRI) in the early assessment of breast cancer during neoadjuvant chemotherapy: an emerging role to monitoring tumor response? Radiol med 126:517–526. https://doi.org/10.1007/s11547-020-01319-3

    Article  PubMed  Google Scholar 

  51. Robinson C, Halligan S, Iinuma G et al (2011) CT colonography: computer-assisted detection of colorectal cancer. Br J Radiol 84:435–440. https://doi.org/10.1259/bjr/17848340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Trebeschi S, Van Griethuysen JJM, Lambregts DMJ et al (2017) Deep learning for fully-automated localization and segmentation of rectal cancer on multiparametric MR. Sci Rep 7:5301. https://doi.org/10.1038/s41598-017-05728-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Soomro MH, Coppotelli M, Conforto S et al (2019) Automated segmentation of colorectal tumor in 3D MRI using 3D multiscale densely connected convolutional neural network. J Healthc Eng. https://doi.org/10.1155/2019/1075434

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yang T, Liang N, Li J et al (2019) Intelligent imaging technology in diagnosis of colorectal cancer using deep learning. IEEE Access 7:178839–178847. https://doi.org/10.1109/ACCESS.2019.2958124

    Article  Google Scholar 

  55. Wu QY, Liu SL, Sun P et al (2021) Establishment and clinical application value of an automatic diagnosis platform for rectal cancer T-staging based on a deep neural network. Chin Med J (Engl) 134:821–828. https://doi.org/10.1097/CM9.0000000000001401

    Article  Google Scholar 

  56. Ding L, Liu G, Zhang X et al (2020) A deep learning nomogram kit for predicting metastatic lymph nodes in rectal cancer. Cancer Med 9:8809–8820. https://doi.org/10.1002/cam4.3490

    Article  PubMed  PubMed Central  Google Scholar 

  57. Granata V, Fusco R, De Muzio F et al (2022) Radiomics textural features by MR imaging to assess clinical outcomes following liver resection in colorectal liver metastases. Radiol med. https://doi.org/10.1007/s11547-022-01477-6

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ravanelli M, Agazzi GM, Tononcelli E et al (2019) Texture features of colorectal liver metastases on pretreatment contrast-enhanced CT may predict response and prognosis in patients treated with bevacizumab-containing chemotherapy: a pilot study including comparison with standard chemotherapy. Radiol med 124:877–886. https://doi.org/10.1007/s11547-019-01046-4

    Article  PubMed  Google Scholar 

  59. Ma X, Shen F, Jia Y et al (2019) MRI-based radiomics of rectal cancer: Preoperative assessment of the pathological features. BMC Med Imaging 19:1–7. https://doi.org/10.1186/s12880-019-0392-7

    Article  Google Scholar 

  60. Wu X, Li Y, Chen X et al (2020) Deep learning features improve the performance of a radiomics signature for predicting kras status in patients with colorectal cancer. Acad Radiol 27:e254–e262. https://doi.org/10.1016/j.acra.2019.12.007

    Article  PubMed  Google Scholar 

  61. Yi X, Pei Q, Zhang Y et al (2019) MRI-based radiomics predicts tumor response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Front Oncol 9:552. https://doi.org/10.3389/fonc.2019.00552

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ferrari R, Mancini-Terracciano C, Voena C et al (2019) MR-based artificial intelligence model to assess response to therapy in locally advanced rectal cancer. Eur J Radiol 118:1–9. https://doi.org/10.1016/j.ejrad.2019.06.013

    Article  CAS  PubMed  Google Scholar 

  63. Cusumano D, Dinapoli N, Boldrini L et al (2018) Fractal-based radiomic approach to predict complete pathological response after chemo-radiotherapy in rectal cancer. Radiol Med 123:286–295. https://doi.org/10.1007/s11547-017-0838-3

    Article  PubMed  Google Scholar 

  64. Cusumano D, Meijer G, Lenkowicz J et al (2021) A field strength independent MR radiomics model to predict pathological complete response in locally advanced rectal cancer. Radiol Med 126:421–429. https://doi.org/10.1007/s11547-020-01266-z

    Article  PubMed  Google Scholar 

  65. Shi L, Zhang Y, Nie K et al (2019) Machine learning for prediction of chemoradiation therapy response in rectal cancer using pre-treatment and mid-radiation multi-parametric MRI. Magn Reson Imaging 61:33–40. https://doi.org/10.1016/j.mri.2019.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  66. Fu J, Zhong X, Li N et al (2020) Deep learning-based radiomic features for improving neoadjuvant chemoradiation response prediction in locally advanced rectal cancer. Phys Med Biol 65:075001. https://doi.org/10.1088/1361-6560/ab7970

    Article  PubMed  Google Scholar 

  67. Bibault JE, Giraud P, Durdux C et al (2018) Deep learning and radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer. Sci Rep 8:12611. https://doi.org/10.1038/s41598-018-30657-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Forghani R, Savadjiev P, Chatterjee A et al (2019) Radiomics and artificial intelligence for biomarker and prediction model development in oncology. Comput Struct Biotechnol J 17:995–1008. https://doi.org/10.1016/j.csbj.2019.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  69. Grassi R, Miele V, Giovagnoni A (2019) Artificial intelligence: a challenge for third millennium radiologist. Radiol med 124:241–242. https://doi.org/10.1007/s11547-019-00990-5

    Article  PubMed  Google Scholar 

  70. Gurgitano M, Angileri SA, Rodà GM et al (2021) Interventional Radiology ex-machina: impact of Artificial Intelligence on practice. Radiol med 126:998–1006. https://doi.org/10.1007/s11547-021-01351-x

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sollini M, Antunovic L, Chiti A, Kirienko M (2019) Towards clinical application of image mining: a systematic review on artificial intelligence and radiomics. Eur J Nucl Med Mol Imaging 46:2656–2672. https://doi.org/10.1007/s00259-019-04372-x

    Article  PubMed  PubMed Central  Google Scholar 

  72. Farchione A, Larici AR, Masciocchi C et al (2020) Exploring technical issues in personalized medicine: NSCLC survival prediction by quantitative image analysis—usefulness of density correction of volumetric CT data. Radiol med 125:625–635. https://doi.org/10.1007/s11547-020-01157-3

    Article  PubMed  Google Scholar 

  73. Sharma N, Ray AK, Shukla KK et al (2010) Automated medical image segmentation techniques. J Med Phys 35:3–14. https://doi.org/10.4103/0971-6203.58777

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhang M, Ma KT, Lim JH et al (2019) Anticipating where people will look using adversarial networks. IEEE Trans Pattern Anal Mach Intell 41:1783–1796. https://doi.org/10.1109/TPAMI.2018.2871688

    Article  PubMed  Google Scholar 

  75. Kallenberg M, Petersen K, Nielsen M et al (2016) Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans Med Imaging 35:1322–1331. https://doi.org/10.1109/TMI.2016.2532122

    Article  PubMed  Google Scholar 

  76. Cabitza F, Rasoini R, Gensini GF (2017) Unintended consequences of machine learning in medicine. JAMA 318:517–518. https://doi.org/10.1001/jama.2017.7797

    Article  PubMed  Google Scholar 

  77. Geis JR, Brady AP, Wu CC et al (2019) Ethics of artificial intelligence in radiology: summary of the joint European and North American multisociety statement. J Am Coll Radiol 16:1516–1521. https://doi.org/10.1016/j.jacr.2019.07.028

    Article  PubMed  Google Scholar 

  78. Coppola F, Faggioni L, Regge D et al (2021) Artificial intelligence: radiologists’ expectations and opinions gleaned from a nationwide online survey. Radiol Med 126:63–71. https://doi.org/10.1007/s11547-020-01205-y

    Article  PubMed  Google Scholar 

  79. Agarwal M, van der Pol CB, Patlas MN et al (2021) Optimizing the radiologist work environment: Actionable tips to improve workplace satisfaction, efficiency, and minimize burnout. Radiol med 126:1255–1257. https://doi.org/10.1007/s11547-021-01397-x

    Article  PubMed  Google Scholar 

  80. Neri E, Coppola F, Miele V et al (2020) Artificial intelligence: Who is responsible for the diagnosis? Radiol Med 125:517–521. https://doi.org/10.1007/s11547-020-01135-9

    Article  PubMed  Google Scholar 

  81. Reddy S, Fox J, Purohit MP (2019) Artificial intelligence-enabled healthcare delivery. J R Soc Med 112:22–28. https://doi.org/10.1177/0141076818815510

    Article  PubMed  Google Scholar 

  82. Coppola F, Faggioni L, Gabelloni M, De Vietro F, Mendola V, Cattabriga A, Cocozza MA, Vara G, Piccinino A, Lo Monaco S, Pastore LV, Mottola M, Malavasi S, Bevilacqua A, Neri E, Golfieri R (2021) Human, all too human? an all-around appraisal of the “Artificial intelligence revolution” in medical imaging. Front Psychol 12:710982. https://doi.org/10.3389/fpsyg.2021.710982

    Article  PubMed  PubMed Central  Google Scholar 

  83. Cath C, Wachter S, Mittelstadt B et al (2018) Artificial intelligence and the “Good Society”: the US, EU, and UK approach. Sci Eng Ethics 24(2):505–528. https://doi.org/10.1007/s11948-017-9901-7

    Article  PubMed  Google Scholar 

  84. Pesapane F, Volonté C, Codari M et al (2018) Artificial intelligence as a medical device in radiology: ethical and regulatory issues in Europe and the United States. Insights Imaging 9:745–753. https://doi.org/10.1007/s13244-018-0645-y

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

MR and CEB conceptualized the study; SB and SP participated in data collection and image processing; NP and DB performed data analysis; AI participated in patient selection; MR supervised image processing, critically interpreted the results and drafted the paper; IC, AL and GS supervised the activities; and all the authors read, commented and approved the manuscript.

Corresponding author

Correspondence to Daniela Ballerini.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The manuscript does not contain clinical studies or patient data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vicini, S., Bortolotto, C., Rengo, M. et al. A narrative review on current imaging applications of artificial intelligence and radiomics in oncology: focus on the three most common cancers. Radiol med 127, 819–836 (2022). https://doi.org/10.1007/s11547-022-01512-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-022-01512-6

Keywords

Navigation