Skip to main content
Log in

Real-world clinical validity of cardiac magnetic resonance tissue tracking in primitive hypertrophic cardiomyopathy

  • Cardiac radiology
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Objective

Cardiac magnetic resonance (CMR) is an uncontested diagnostic tool for identifying and assessing hypertrophic cardiomyopathy (HCM) patients. Concerning the necessity to identify valid prognosticators for predicting the individual risk of clinical evolution, this study aimed to evaluate the clinical validity of CMR tissue tracking (TT) analysis in patients affected by primitive HCM in a real-world setting.

Methods

This historical prospective study included 33 patients. Diagnostic validity and clinical validation were assessed for strain values. CMR-TT diagnostic validity was studied comparing HCM patients with healthy control groups and phenotypic presentation of HCM. The impact of strain values and all phenotypic disease characteristics were assessed in a long-term follow-up study.

Results

The inter-reading agreement was good for all strain parameters. Significant differences were observed between the control group and HCM patients. Similarly, hypertrophic and LGE + segments showed lower deformability than healthy segments. The AUC of predictive model, including conventional risk factors for MACE occurrence and all strain values, reached 98% of diagnostic concordance (95% CI .94–1; standard error: .02; p value .0001), compared to conventional risk factors only (86%; 95% CI .73–99; standard error: .07; p value .002).

Conclusion

In patients with primitive HCM, CMR-TT strain proves high clinical validity providing independent and non-negligible prognostic advantages over clinical features and traditional CMR markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HCM:

Hypertrophic cardiomyopathy

SCD:

Sudden cardiac death

NYHA:

New York Heart Association

LVOTO:

Left ventricular outflow tract obstruction

LGE:

Late gadolinium enhancement

GLS:

Global longitudinal strain

LV:

Left ventricular

CMR:

Cardiac magnetic resonance

ESC:

European society of cardiology

TT:

Tissue tracking

MDE:

Myocardial delayed enhancement

ICD:

Implantable cardiac defibrillator

ICC:

Intraclass correlation

ANOVA:

Analysis of variance

SAM:

Systolic anterior motion

MACE:

Major adverse cardiac event

EF:

Ejection fraction

GRS:

Global radial strain

GCS:

Global circumferential strain

h:

Healthy

HR:

Hazard ratio

AI:

Artificial intelligence

References

  1. Maron BJ, Maron MS (2013) Hypertrophic cardiomyopathy. Lancet 381(9862):242–255

    Article  PubMed  Google Scholar 

  2. Maron BJ (2018) Clinical course and management of hypertrophic cardiomyopathy. N Engl J Med 379(7):655–668

    Article  PubMed  Google Scholar 

  3. Maron MS, Wells S (2019) Myocardial strain in hypertrophic cardiomyopathy. J Am Coll Cardiol Cardiovasc Imaging 12(10):1943–1945

    Article  Google Scholar 

  4. Liu Q, Li D, Berger AE, Johns RA, Gao L (2017) Survival and prognostic factors in hypertrophic cardiomyopathy: a meta-analysis. Sci Rep 7(1):1–10

    Google Scholar 

  5. Marrakchi S, Kammoun I, Bennour E, Laroussi L, Kachboura S (2020) Risk stratification in hypertrophic cardiomyopathy. Herz 45:50–64

    Article  CAS  PubMed  Google Scholar 

  6. Makavos G, Κairis C, Tselegkidi ME, Karamitsos T, Rigopoulos AG, Noutsias M et al (2019) Hypertrophic cardiomyopathy: an updated review on diagnosis, prognosis, and treatment. Heart Fail Rev 24:439–459

    Article  PubMed  Google Scholar 

  7. Pradella S, Grazzini G, De Amicis C, Letteriello M, Acquafresca M, Miele V (2020) Cardiac magnetic resonance in hypertrophic and dilated cardiomyopathies. Radiol Med 125(11):1056–1071

    Article  PubMed  Google Scholar 

  8. Ciancarella P, Ciliberti P, Santangelo TP, Secchi F, Stagnaro N, Secinaro A (2020) Noninvasive imaging of congenital cardiovascular defects. Radiol Med 125(11):1167–1185

    Article  PubMed  Google Scholar 

  9. Esposito A, Gallone G, Palmisano A, Marchitelli L, Catapano F, Francone M (2020) The current landscape of imaging recommendations in cardiovascular clinical guidelines: toward an imaging-guided precision medicine. Radiol Med 125(11):1013–1023

    Article  PubMed  PubMed Central  Google Scholar 

  10. Russo V, Lovato L, Ligabue G (2020) Cardiac MRI: technical basis. Radiol Med 125:1040–1055

    Article  PubMed  Google Scholar 

  11. Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P et al (2014) 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J 35(39):2733–2779

    Article  PubMed  Google Scholar 

  12. Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, et al (2011) ACCF/AHA Guideline 2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, pp 783–831

  13. Briasoulis A, Mallikethi-Reddy S, Palla M, Alesh I, Afonso L (2015) Myocardial fibrosis on cardiac magnetic resonance and cardiac outcomes in hypertrophic cardiomyopathy: a meta-analysis. Heart 101(17):1406–1411

    Article  CAS  PubMed  Google Scholar 

  14. Weng Z, Yao J, Chan RH, He J, Yang X, Zhou Y et al (2016) Prognostic value of LGE-CMR in HCM: a meta-analysis. JACC Cardiovasc Imaging 9(12):1392–1402

    Article  PubMed  Google Scholar 

  15. Ommen S, Mital S, Burke M, Day SM, Deswal A, Evanovich LL et al (2020) AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 2020:e1-82

    Google Scholar 

  16. Satriano A, Heydari B, Guron N, Fenwick K, Cheung M, Mikami Y et al (2019) 3-Dimensional regional and global strain abnormalities in hypertrophic cardiomyopathy. Int J Cardiovasc Imaging 35(10):1913–1924

    Article  PubMed  Google Scholar 

  17. Inciardi RM, Galderisi M, Nistri S, Santoro C, Cicoira M, Rossi A (2018) Echocardiographic advances in hypertrophic cardiomyopathy: Three-dimensional and strain imaging echocardiography. Echocardiography 35(5):716–726

    Article  PubMed  Google Scholar 

  18. Palumbo P, Rolf S, Manuel BP, Davide C, Dresselaers T, Claus P et al (2020) Left ventricular global myocardial strain assessment: are CMR feature-tracking algorithms useful in the clinical setting? Radiol Med 125(5):444–450

    Article  Google Scholar 

  19. Vigneault DM, Yang E, Jensen PJ, Tee MW, Farhad H, Chu L et al (2019) Left ventricular strain is abnormal in preclinical and overt hypertrophic cardiomyopathy: cardiac MR feature tracking. Radiology 290(3):640–648

    Article  PubMed  Google Scholar 

  20. Neisius U, Myerson L, Fahmy AS, Nakamori S, El-Rewaidy H, Joshi G et al (2019) Cardiovascular magnetic resonance feature tracking strain analysis for discrimination between hypertensive heart disease and hypertrophic cardiomyopathy. PLoS ONE 14(8):1–18

    Article  Google Scholar 

  21. Jung HN, Kim SM, Lee JH, Kim Y, Lee SC, Jeon ES et al (2020) Comparison of tissue tracking assessment by cardiovascular magnetic resonance for cardiac amyloidosis and hypertrophic cardiomyopathy. Acta Radiol 61(7):885–893

    Article  PubMed  Google Scholar 

  22. Sunthankar S, Parra DA, George-Durrett K, Crum K, Chew JD, Christensen J et al (2019) Tissue characterisation and myocardial mechanics using cardiac MRI in children with hypertrophic cardiomyopathy. Cardiol Young 29(12):1459–1467

    Article  PubMed  PubMed Central  Google Scholar 

  23. McComb C, Carrick D, McClure JD, Woodward R, Radjenovic A, Foster JE et al (2015) Assessment of the relationships between myocardial contractility and infarct tissue revealed by serial magnetic resonance imaging in patients with acute myocardial infarction. Int J Cardiovasc Imaging 31(6):1201–1209

    Article  PubMed  PubMed Central  Google Scholar 

  24. Buffa V, Di Renzi P (2020) CMR in the diagnosis of ischemic heart disease. Radiol Med 125:1114–1123

    Article  PubMed  Google Scholar 

  25. Jeung MY, Germain P, Croisille P, El GS, Roy C, Gangi A (2012) Myocardial tagging with MR imaging: overview of normal and pathologic findings. Radiographics 32(5):1381–1398

    Article  PubMed  Google Scholar 

  26. Balasubramanian S, Harrild DM, Kerur B, Marcus E, Del Nido P, Geva T et al (2018) Impact of surgical pulmonary valve replacement on ventricular strain and synchrony in patients with repaired tetralogy of Fallot: A cardiovascular magnetic resonance feature tracking study. J Cardiovasc Magn Reson 20(1):1–11

    Article  Google Scholar 

  27. Luetkens JA, Petry P, Kuetting D, Dabir D, Schmeel FC, Homsi R et al (2018) Left and right ventricular strain in the course of acute myocarditis: a cardiovascular magnetic resonance study. RoFo 190(8):722–732

    Article  PubMed  Google Scholar 

  28. Charbonnel C, Convers-Domart R, Rigaudeau S, Taksin AL, Baron N, Lambert J et al (2017) Assessment of global longitudinal strain at lowdose anthracycline-based chemotherapy, for the prediction of subsequent cardiotoxicity. Eur Heart J Cardiovasc Imaging 18(4):392–401

    PubMed  Google Scholar 

  29. Taha K, Mast TP, Cramer MJ, van der Heijden JF, Asselbergs FW, Doevendans PA et al (2020) Evaluation of disease progression in arrhythmogenic cardiomyopathy: the change of echocardiographic deformation characteristics over time. JACC Cardiovasc Imaging Vol. 13:631–634

    Article  Google Scholar 

  30. Swat SA, Cohen D, Shah SJ, Lloyd-Jones DM, Baldridge AS, Freed BH et al (2018) Baseline longitudinal strain predicts recovery of left ventricular ejection fraction in hospitalized patients with nonischemic cardiomyopathy. J Am Heart Assoc 7:20

    Article  Google Scholar 

  31. Hiemstra YL, Tomsic A, van Wijngaarden SE, Palmen M, Klautz RJM, Bax JJ et al (2020) Prognostic value of global longitudinal strain and etiology after surgery for primary mitral regurgitation. JACC Cardiovasc Imaging 13(2P2):577–585

    Article  PubMed  Google Scholar 

  32. Liguori C, Farina D, Vaccher F, Ferrandino G, Bellini D, Carbone I (2020) Myocarditis: imaging up to date. Radiol Med 125:1124–1134

    Article  PubMed  PubMed Central  Google Scholar 

  33. Palumbo P, Cannizzaro E, Di Cesare A, Bruno F, Schicchi N, Giovagnoni A et al (2020) Cardiac magnetic resonance in arrhythmogenic cardiomyopathies. Radiol Med 125(11):1087–1101

    Article  PubMed  Google Scholar 

  34. Galea N, Polizzi G, Gatti M, Cundari G, Figuera M, Faletti R (2020) Cardiovascular magnetic resonance (CMR) in restrictive cardiomyopathies. Radiol Med 125(11):1072–1086

    Article  PubMed  PubMed Central  Google Scholar 

  35. Romano S, Judd RM, Kim RJ, Kim HW, Klem I, Heitner JF et al (2018) Feature-tracking global longitudinal strain predicts death in a multicenter population of patients with ischemic and nonischemic dilated cardiomyopathy incremental to ejection fraction and late gadolinium enhancement. JACC Cardiovasc Imaging 11(10):1419–1429

    Article  PubMed  PubMed Central  Google Scholar 

  36. Verdonschot JAJ, Merken JJ, Brunner-La Rocca HP, Hazebroek MR, Eurlings CGMJ, Thijssen E et al (2020) Value of speckle tracking-based deformation analysis in screening relatives of patients with asymptomatic dilated cardiomyopathy. JACC Cardiovasc Imaging 13(22):549–558

    Article  PubMed  Google Scholar 

  37. Hinojar R, Fernández-Golfín C, González-Gómez A, Rincón LM, Plaza-Martin M, Casas E et al (2017) Prognostic implications of global myocardial mechanics in hypertrophic cardiomyopathy by cardiovascular magnetic resonance feature tracking. Relations to left ventricular hypertrophy and fibrosis. Int J Cardiol 249:467–472

    Article  PubMed  Google Scholar 

  38. Zhao X, Tan RS, Tang HC, Leng S, Zhang JM, Zhong L (2018) Analysis of three-dimensional endocardial and epicardial strains from cardiac magnetic resonance in healthy subjects and patients with hypertrophic cardiomyopathy. Med Biol Eng Comput 56(1):159–172

    Article  PubMed  Google Scholar 

  39. Wu R, An DA, Shi RY, Chen B, Jiang M, Bacyinski A et al (2018) Myocardial fibrosis evaluated by diffusion-weighted imaging and its relationship to 3D contractile function in patients with hypertrophic cardiomyopathy. J Magn Reson Imaging 48(4):1139–1146

    Article  PubMed  Google Scholar 

  40. Dahhan A, Mohammad A, Kapoor D, Sharma GK (2011) Hypotension due to dynamic left ventricular outflow tract obstruction: after percutaneous coronary intervention. Texas Hear Inst J 38(6):723–726

    Google Scholar 

  41. Geske JB, Sorajja P, Ommen SR, Nishimura RA (2009) Left ventricular outflow tract gradient variability in hypertrophic cardiomyopathy. Clin Cardiol 32(7):397–402

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fifer MA, Vlahakes GJ (2008) Management of symptoms in hypertrophic cardiomyopathy. Circulation 117(3):429–439

    Article  PubMed  Google Scholar 

  43. van Assen M, Muscogiuri G, Caruso D, Lee SJ, Laghi A, De Cecco CN (2020) Artificial intelligence in cardiac radiology. Radiol Med 125(11):1186–1199

    Article  PubMed  Google Scholar 

  44. Bloom MW, Greenberg B, Jaarsma T, Januzzi JL, Lam CSP, Maggioni AP et al (2017) Heart failure with reduced ejection fraction. Nat Rev Dis Prim 3:1–20

    Google Scholar 

  45. Di Cesare E, Carerj S, Palmisano A, Carerj ML, Catapano F, Vignale D et al (2021) Multimodality imaging in chronic heart failure. Radiol Med 126:231–242

    Article  PubMed  Google Scholar 

  46. Geyer H, Caracciolo G, Abe H, Wilansky S, Carerj S, Gentile F et al (2010) Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr 23(4):351–369

    Article  PubMed  Google Scholar 

  47. Voigt JU, Cvijic M (2019) 2- and 3-dimensional myocardial strain in cardiac health and disease. JACC Cardiovasc Imaging 12(9):1849–1863

    Article  PubMed  Google Scholar 

  48. Holmes AA, Romero J, Levsky JM, Haramati LB, Phuong N, Rezai-Gharai L et al (2017) Circumferential strain acquired by CMR early after acute myocardial infarction adds incremental predictive value to late gadolinium enhancement imaging to predict late myocardial remodeling and subsequent risk of sudden cardiac death. J Interv Card Electrophysiol 50(3):211–218

    Article  PubMed  Google Scholar 

  49. Tower-Rader A, Mohananey D, To A, Lever HM, Popovic ZB, Desai MY (2019) Prognostic value of global longitudinal strain in hypertrophic cardiomyopathy: a systematic review of existing literature. JACC Cardiovasc Imaging 12(10):1930–1942

    Article  PubMed  Google Scholar 

  50. Perry R, Patil S, Marx C, Horsfall M, Chew DP, Sree Raman K et al (2020) Advanced echocardiographic imaging for prediction of SCD in moderate and severe LV systolic function. JACC Cardiovasc Imaging 13(22):604–612

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to the information contained in the submitted paper and approved the final version of the manuscript.

Corresponding author

Correspondence to Pierpaolo Palumbo.

Ethics declarations

Conflict of interest

Nothing to disclose.

Ethics approval

The study complies with the Declaration of Helsinki principles, and the institutional review board has granted its ethics approval.

Data availability

Data are available on request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palumbo, P., Masedu, F., De Cataldo, C. et al. Real-world clinical validity of cardiac magnetic resonance tissue tracking in primitive hypertrophic cardiomyopathy. Radiol med 126, 1532–1543 (2021). https://doi.org/10.1007/s11547-021-01432-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-021-01432-x

Keywords

Navigation