Skip to main content
Log in

Evaluation of relationships between the final Gleason score, PI-RADS v2 score, ADC value, PSA level, and tumor diameter in patients that underwent radical prostatectomy due to prostate cancer

  • ABDOMINAL RADIOLOGY
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Introduction

This study aimed to investigate the relationship between the serum PSA level, Gleason score (GS), PI-RADS v2 score, tumor ADCmin value, and the largest tumor diameter in patients that underwent radical prostatectomy (RP) due to prostate cancer (PCa) and to comparatively evaluate the variables of these parameters in clinically significant and insignificant PCa groups.

Materials and methods

The mpMRI examinations of the patients who underwent RP due to PCa were retrospectively evaluated. According to the final GS, the lesions were divided into two groups as clinically significant (GS ≥ 7) and insignificant (GS ≤ 6). The PSA value, tumor ADCmin value, tumor diameter, and PI-RADS score were compared between the clinically significant and nonsignificant PCa groups using Student’s t-test. The correlations between the serum PSA level, GS, PI-RADS v2 score, tumor ADCmin value, and tumor diameter were evaluated separately (Pearson’s correlation analysis was used for peripheral gland tumors, and Spearman’s correlation analysis for central gland tumors). A ROC analysis was undertaken to evaluate the efficacy of the tumor ADCmin, diameter and PSA values in differentiating clinically significant and nonsignificant tumors.

Results

In both central and peripheral gland tumors, there was a correlation between the PSA level, tumor diameter, PI-RADS score, ADCmin value, and GS at various levels (poor, moderate, and high). In central gland tumors, there was no significant difference between the two groups in terms of the PSA value and PI-RADS scores (p > 0.05), but the ADCmin value and diameter of the tumor significantly differed (p < 0.05). For peripheral gland tumors, significant differences were observed in all parameters (p < 0.05). The cut-off values for the peripheral and central gland tumors are as follows: lesion diameter, 13.5 mm and 19 mm; tumor ADCmin, 0.709 × 10−3 mm2/s and 0.874 × 10−3 mm2/s; and PSA level, 8.47 ng/ml and 11.10 ng/ml, respectively.

Conclusion

The current PI-RADS v2 scoring system can be inadequate in distinguishing clinically significant and insignificant groups in central gland tumors. A separate cut-off value of the tumor diameter should be determined for central and peripheral gland tumors. Tumor ADCmin values can be used as a predictive parameter. The PSA cut-off value should be kept lower in peripheral gland tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69(1):7–34. https://doi.org/10.3322/caac.21551

    Article  PubMed  Google Scholar 

  2. Johnson LM, Choyke PL, Figg WD, Turkbey B (2014) The role of MRI in prostate cancer active surveillance. Biomed Res Int 2014:203906. https://doi.org/10.1155/2014/203906

    Article  PubMed  PubMed Central  Google Scholar 

  3. Alessandrino F, Taghipour M, Hassanzadeh E, Ziaei A, Vangel M, Fedorov A, Tempany CM, Fennessy FM (2019) Predictive role of PI-RADSv2 and ADC parameters in differentiating Gleason pattern 3 + 4 and 4 + 3 prostate cancer. Abdom Radiol (NY) 44(1):279–285. https://doi.org/10.1007/s00261-018-1718-6

    Article  Google Scholar 

  4. Hassanzadeh E, Glazer DI, Dunne RM, Fennessy FM, Harisinghani MG, Tempany CM (2017) Prostate imaging reporting and data system version 2 (PI-RADS v2): a pictorial review. Abdom Radiol (NY) 42(1):278–289. https://doi.org/10.1007/s00261-016-0871-z

    Article  Google Scholar 

  5. Turkbey B, Brown AM, Sankineni S, Wood BJ, Pinto PA, Choyke PL (2016) Multiparametric prostate magnetic resonance imaging in the evaluation of prostate cancer. CA Cancer J Clin 66(4):326–336. https://doi.org/10.3322/caac.21333

    Article  PubMed  Google Scholar 

  6. Gupta RT, Spilseth B, Patel N, Brown AF, Yu J (2016) Multiparametric prostate MRI: focus on T2-weighted imaging and role in staging of prostate cancer. Abdom Radiol (NY) 41(5):831–843. https://doi.org/10.1007/s00261-015-0579-5

    Article  Google Scholar 

  7. Starobinets O, Simko JP, Kuchinsky K, Kornak J, Carroll PR, Greene KL, Kurhanewicz J, Noworolski SM (2017) Characterization and stratification of prostate lesions based on comprehensive multiparametric MRI using detailed whole-mount histopathology as a reference standard. NMR Biomed. https://doi.org/10.1002/nbm.3796

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fütterer JJ, Briganti A, De Visschere P, Emberton M, Giannarini G, Kirkham A, Taneja SS, Thoeny H, Villeirs G, Villers A (2015) Can clinically significant prostate cancer be detected with multiparametric magnetic resonance imaging? A systematic review of the literature. Eur Urol 68(6):1045–1053. https://doi.org/10.1016/j.eururo.2015.01.013

    Article  PubMed  Google Scholar 

  9. Esen T, Turkbey B, Patel A, Futterer J (2014) Multiparametric MRI in prostate cancer. Biomed Res Int 2014:296810. https://doi.org/10.1155/2014/296810

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tamada T, Sone T, Higashi H, Jo Y, Yamamoto A, Kanki A, Ito K (2011) Prostate cancer detection in patients with total serum prostate-specific antigen levels of 4-10 ng/mL: diagnostic efficacy of diffusion-weighted imaging, dynamic contrast-enhanced MRI, and T2-weighted imaging. AJR Am J Roentgenol 197(3):664–670. https://doi.org/10.2214/AJR.10.5923

    Article  PubMed  Google Scholar 

  11. Kitzing YX, Prando A, Varol C, Karczmar GS, Maclean F, Oto A (2016) Benign conditions that mimic prostate carcinoma: MR imaging features with histopathologic correlation. Radiographics 36(1):162–175. https://doi.org/10.1148/rg.2016150030

    Article  PubMed  Google Scholar 

  12. Fütterer JJ (2017) Multiparametric MRI in the detection of clinically significant prostate cancer. Korean J Radiol 18(4):597–606. https://doi.org/10.3348/kjr.2017.18.4.597

    Article  PubMed  PubMed Central  Google Scholar 

  13. Borofsky S, George AK, Gaur S, Bernardo M, Greer MD, Mertan FV, Taffel M, Moreno V, Merino MJ, Wood BJ, Pinto PA, Choyke PL, Turkbey B (2018) What are we missing? False-negative cancers at multiparametric MR imaging of the prostate. Radiology 286(1):186–195. https://doi.org/10.1148/radiol.2017152877

    Article  PubMed  Google Scholar 

  14. Fusco R, Sansone M, Petrillo M, Setola SV, Granata V, Botti G, Perdonà S, Borzillo V, Muto P, Petrillo A (2016) Multiparametric MRI for prostate cancer detection: preliminary results on quantitative analysis of dynamic contrast enhanced imaging, diffusion-weighted imaging and spectroscopy imaging. Magn Reson Imaging 34(7):839–845. https://doi.org/10.1016/j.mri.2016.04.001

    Article  PubMed  Google Scholar 

  15. Haider MA, Yao X, Loblaw A, Finelli A (2016) Multiparametric magnetic resonance imaging in the diagnosis of prostate cancer: a systematic review. Clin Oncol (R Coll Radiol) 28(9):550–567. https://doi.org/10.1016/j.clon.2016.05.003

    Article  CAS  Google Scholar 

  16. Mertan FV, Berman R, Szajek K, Pinto PA, Choyke PL, Turkbey B (2016) Evaluating the role of mpMRI in prostate cancer assessment. Expert Rev Med Devices 13(2):129–141. https://doi.org/10.1586/17434440.2016.1134311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hoang Dinh A, Melodelima C, Souchon R, Lehaire J, Bratan F, Mège-Lechevallier F, Ruffion A, Crouzet S, Colombel M, Rouvière O (2016) Quantitative analysis of prostate multiparametric MR images for detection of aggressive prostate cancer in the peripheral zone: a multiple imager study. Radiology 280(1):117–127. https://doi.org/10.1148/radiol.2016151406

    Article  PubMed  Google Scholar 

  18. Ahmed HU, El-Shater Bosaily A, Brown LC, Gabe R, Kaplan R, Parmar MK, Collaco-Moraes Y, Ward K, Hindley RG, Freeman A, Kirkham AP, Oldroyd R, Parker C, Emberton M, PROMIS study group (2017) Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 389(10071):815–822. https://doi.org/10.1016/s0140-6736(16)32401-1

    Article  PubMed  Google Scholar 

  19. McCann SM, Jiang Y, Fan X, Wang J, Antic T, Prior F, VanderWeele D, Oto A (2016) Quantitative multiparametric MRI features and PTEN expression of peripheral zone prostate cancer: a pilot study. AJR Am J Roentgenol 206(3):559–565. https://doi.org/10.2214/AJR.15.14967

    Article  PubMed  Google Scholar 

  20. Kasel-Seibert M, Lehmann T, Aschenbach R, Guettler FV, Abubrig M, Grimm MO, Teichgraeber U, Franiel T (2016) Assessment of PI-RADS v2 for the detection of prostate cancer. Eur J Radiol 85(4):726–731. https://doi.org/10.1016/j.ejrad.2016.01.011

    Article  PubMed  Google Scholar 

  21. Wei C, Jin B, Szewczyk-Bieda M, Gandy S, Lang S, Zhang Y, Huang Z, Nabi G (2018) Quantitative parameters in dynamic contrast-enhanced magnetic resonance imaging for the detection and characterization of prostate cancer. Oncotarget 9(22):15997–16007. https://doi.org/10.18632/oncotarget.24652

    Article  PubMed  PubMed Central  Google Scholar 

  22. Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ, Margolis D, Schnall MD, Shtern F, Tempany CM, Thoeny HC, Verma S (2016) PI-RADS prostate imaging—reporting and data system: 2015, version 2. Eur Urol 69(1):16–40. https://doi.org/10.1016/j.eururo.2015.08.052Epub 2015 Oct 1 PubMed PMID: 26427566

    Article  PubMed  Google Scholar 

  23. Hambrock T, Somford DM, Huisman HJ, van Oort IM, Witjes JA, Hulsbergen-van de Kaa CA, Scheenen T, Barentsz JO (2011) Relationship between apparent diffusion coefficients at 3.0-T MR imaging and Gleason grade in peripheral zone prostate cancer. Radiology 259(2):453–461. https://doi.org/10.1148/radiol.11091409

    Article  PubMed  Google Scholar 

  24. Oto A, Yang C, Kayhan A, Tretiakova M, Antic T, Schmid-Tannwald C, Eggener S, Karczmar GS, Stadler WM (2011) Diffusion-weighted and dynamic contrast-enhanced MRI of prostate cancer: correlation of quantitative MR parameters with Gleason score and tumor angiogenesis. AJR Am J Roentgenol 197(6):1382–1390. https://doi.org/10.2214/AJR.11.6861

    Article  PubMed  Google Scholar 

  25. Park JJ, Park BK (2017) Role of PI-RADSv2 with multiparametric MRI in determining who needs active surveillance or definitive treatment according to PRIAS. J Magn Reson Imaging 45(6):1753–1759. https://doi.org/10.1002/jmri.25534

    Article  PubMed  Google Scholar 

  26. Habibian DJ, Liu CC, Dao A, Kosinski KE, Katz AE (2017) Imaging characteristics of prostate cancer patients who discontinued active surveillance on 3-T multiparametric prostate MRI. AJR Am J Roentgenol 208(3):564–569. https://doi.org/10.2214/AJR.16.16822

    Article  PubMed  Google Scholar 

  27. Kwak JT, Sankineni S, Xu S, Turkbey B, Choyke PL, Pinto PA, Moreno V, Merino M, Wood BJ (2017) Prostate cancer: a correlative study of multiparametric MR imaging and digital histopathology. Radiology 285(1):147–156. https://doi.org/10.1148/radiol.2017160906

    Article  PubMed  Google Scholar 

  28. Mottet N, Bellmunt J, Bolla M, Briers E, Cumberbatch MG, De Santis M, Fossati N, Gross T, Henry AM, Joniau S, Lam TB, Mason MD, Matveev VB, Moldovan PC, van den Bergh RCN, Van den Broeck T, van der Poel HG, van der Kwast TH, Rouvière O, Schoots IG, Wiegel T, Cornford P (2017) EAU-ESTRO-SIOG guide-lines on prostate cancer. Part 1: screening, diagnosis, and local treatment with curative intent. Eur Urol 71(4):618–629. https://doi.org/10.1016/j.eururo.2016.08.003

    Article  PubMed  Google Scholar 

  29. An JY, Sidana A, Holzman SA, Baiocco JA, Mehralivand S, Choyke PL, Wood BJ, Turkbey B, Pinto PA (2018) Ruling out clinically significant prostate cancer with negative multi-parametric MRI. Int Urol Nephrol 50(1):7–12. https://doi.org/10.1007/s11255-017-1715-7

    Article  PubMed  Google Scholar 

  30. Polanec SH, Helbich TH, Bickel H, Wengert GJ, Pinker K, Spick C, Clauser P, Susani M, Shariat S, Baltzer PAT (2018) Quantitative apparent diffusion coefficient derived from diffusion-weighted imaging has the potential to avoid unnecessary MRI-guided biopsies of mpMRI-Detected PI-RADS 4 and 5 lesions. Invest Radiol 53(12):736–741. https://doi.org/10.1097/RLI.0000000000000498

    Article  PubMed  Google Scholar 

  31. Hauth E, Halbritter D, Jaeger H, Hohmuth H, Beer M (2017) Diagnostic value of semi-quantitative and quantitative analysis of functional parameters in multiparametric MRI of the prostate. Br J Radiol 90(1078):20170067. https://doi.org/10.1259/bjr.20170067

    Article  PubMed  PubMed Central  Google Scholar 

  32. Eldred-Evans D, Neves JB, Simmons LAM, Kanthabalan A, McCartan N, Shah TT, Arya M, Charman SC, Freeman A, Moore CM, Punwani S, Emberton M, Ahmed HU (2019) Added value of diffusion-weighted images and dynamic contrast enhancement in multiparametric magnetic resonance imaging for the detection of clinically significant prostate cancer in the PICTURE trial. BJU Int 11:16. https://doi.org/10.1111/bju.14953

    Article  Google Scholar 

  33. Manetta R, Palumbo P, Gianneramo C, Bruno F, Arrigoni F, Natella R, Maggialetti N, Agostini A, Giovagnoni A, Di Cesare E, Splendiani A, Masciocchi C, Barile A (2019) Correlation between ADC values and Gleason score in evaluation of prostate cancer: multicentre experience and review of the literature. Gland Surg 9(8):216–222. https://doi.org/10.21037/gs.2019.05.02

    Article  Google Scholar 

  34. Gaur S, Harmon S, Rosenblum L, Greer MD, Mehralivand S, Coskun M, Merino MJ, Wood BJ, Shih JH, Pinto PA, Choyke PL, Turkbey B (2018) Can apparent diffusion coefficient values assist PI-RADS version 2 DWI scoring? A correlation study using the PI-RADSv2 and international society of urological pathology systems. AJR Am J Roentgenol 211(1):W33–W41. https://doi.org/10.2214/AJR.17.18702

    Article  PubMed  PubMed Central  Google Scholar 

  35. Turkbey B, Shah VP, Pang Y, Bernardo M, Xu S, Kruecker J, Locklin J, Baccala AA Jr, Rastinehad AR, Merino MJ, Shih JH, Wood BJ, Pinto PA, Choyke PL (2011) Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-T MR images? Radiology 258(2):488–495. https://doi.org/10.1148/radiol.10100667

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tamada T, Sone T, Jo Y, Toshimitsu S, Yamashita T, Yamamoto A, Tanimoto D, Ito K (2008) Apparent diffusion coefficient values in peripheral and transition zones of the prostate: comparison between normal and malignant prostatic tissues and correlation with histologic grade. J Magn Reson Imaging 28(3):720–726. https://doi.org/10.1002/jmri.21503

    Article  PubMed  Google Scholar 

  37. Wang XZ, Wang B, Gao ZQ, Liu JG, Liu ZQ, Niu QL, Sun ZK, Yuan YX (2009) Diffusion-weighted imaging of prostate cancer: correlation between apparent diffusion coefficient values and tumor proliferation. J Magn Reson Imaging 29(6):1360–1366. https://doi.org/10.1002/jmri.21797

    Article  PubMed  Google Scholar 

  38. Zelhof B, Pickles M, Liney G, Gibbs P, Rodrigues G, Kraus S, Turnbull L (2009) Correlation of diffusion-weighted magnetic resonance data with cellularity in prostate cancer. BJU Int 103(7):883–888. https://doi.org/10.1111/j.1464-410X.2008.08130.x

    Article  PubMed  Google Scholar 

  39. Jordan EJ, Fiske C, Zagoria R, Westphalen AC (2018) PI-RADS v2 and ADC values: is there room for improvement? Abdom Radiol (NY) 43(11):3109–3116. https://doi.org/10.1007/s00261-018-1557-5

    Article  Google Scholar 

  40. Singh K, Gupta K, Thukral CL, Goyal P, AroraV SI (2018) PI-RADS v2 in prostate cancer and correlation with T staging, PSA levels and ADC values. Iran J Radiol 15(1):e14038. https://doi.org/10.5812/iranjradiol.14038

    Article  Google Scholar 

  41. Hamoen EHJ, de Rooij M, Witjes JA, Barentsz JO, Rovers MM (2015) Use of the prostate imaging reporting and data system (PI-RADS) for prostate cancer detection with multiparametric magnetic resonance imaging: a diagnostic meta-analysis. Eur Urol 67(6):1112–1121. https://doi.org/10.1016/j.eururo.2014.10.033

    Article  PubMed  Google Scholar 

  42. Sönmez G, Tombul ŞT, Demirtaş T, Öztürk F, Demirtaş A (2019) A comparative study: has MRI-guided fusion prostate biopsy changed the prostate-specific antigen gray-zone range? Cureus 11(12):e6329. https://doi.org/10.7759/cureus.6329

    Article  PubMed  PubMed Central  Google Scholar 

  43. Stojadinovic M, Vukovic I, Ivanovic M, Stojadinovic M, Milovanovic D, Pantic D, Jankovic S (2019) Optimal threshold of the prostate health index in predicting aggressive prostate cancer using predefined cost-benefit ratios and prevalence. Int Urol Nephrol. https://doi.org/10.1007/s11255-019-02367-z

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Gündoğdu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments os comparable ethical standards.

Informed consent

For this type of study, formal consent is not required. In any case, all persons gave their informed consent to undergo magnetic resonance imaging.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gündoğdu, E., Emekli, E. & Kebapçı, M. Evaluation of relationships between the final Gleason score, PI-RADS v2 score, ADC value, PSA level, and tumor diameter in patients that underwent radical prostatectomy due to prostate cancer. Radiol med 125, 827–837 (2020). https://doi.org/10.1007/s11547-020-01183-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-020-01183-1

Keywords

Navigation