Skip to main content
Log in

Third-generation dual-source dual-energy CT in pediatric congenital heart disease patients: state-of-the-art

  • CARDIAC RADIOLOGY
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Cardiovascular computer tomography (CT) in pediatric congenital heart disease (CHD) patients is often challenging. This might be due to limited patient cooperation, the high heart rate, the complexity and variety of diseases and the need for radiation dose minimization. The recent developments in CT technology with the introduction of the third-generation dual-source (DS) dual-energy (DE) CT scanners well suited to respond to these challenges. DSCT is characterized by high-pitch, long anatomic coverage and a more flexible electrocardiogram-synchronized scan. DE provides additional clinical information about vascular structures, myocardial and lung perfusion and allows artifacts reduction. These advances have increased clinical indications and modified CT protocol for pediatric CHD patients. In our hospital, DSCT with DE technology has rapidly become an important imaging technique for both pre- and postoperative management of pediatric patients with CHDs. The aim of this article is to describe the state-of-the-art in DSCT protocol with DE technology in pediatric CHD patients, providing some case examples of our experience over an 18-month period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sun R, Liu M, Lu L, Zheng Y, Zhang P (2015) Congenital heart disease: causes, diagnosis, symptoms, and treatments. Cell Biochem Biophys 72(3):857–860

    Article  CAS  PubMed  Google Scholar 

  2. Long CM, Long SS, Johnson PT, Mahesh M, Fishman EK, Zimmerman SL (2015) Utility of low-dose high-pitch scanning for pediatric cardiac computed tomographic imaging. J Thorac Imaging 30(4):W36–W40

    Article  PubMed  Google Scholar 

  3. Booij R, Dijkshoorn ML, van Straten M (2016) Cardiovascular imaging in pediatric patients using dual source CT. J Cardiovasc Comput Tomogr 10:13–21

    Article  PubMed  Google Scholar 

  4. Abbara S, Blanke P, Maroules CD (2016) SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee: endorsed by the North American Society for Cardiovascular Imaging (NASCI). J Cardiovasc Comput Tomogr 10:435–449

    Article  PubMed  Google Scholar 

  5. Johnson JN, Hornik CP, Li JS, Benjamin DK Jr, Yoshizumi TT, Reiman RE, Frush DP, Hill KD (2014) Cumulative radiation exposure and cancer risk estimation in children with heart disease. Circulation 130:161–167

    Article  PubMed  PubMed Central  Google Scholar 

  6. Goo HW, Goo JM (2017) Dual-energy CT: new horizon in medical imaging. Korean J Radiol 18(4):555–569

    Article  PubMed  PubMed Central  Google Scholar 

  7. McCollough CH, Leng S, Yu L, Fletcher JG (2015) Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276(3):637–653

    Article  PubMed  Google Scholar 

  8. Patino M, Prochowski A, Agrawal MD, Simeone FJ, Gupta R, Hahn PF, Sahani DV (2016) Material separation using dual-energy CT: current and emerging applications. RadioGraphics 36(4):1087–1105

    Article  PubMed  Google Scholar 

  9. Siegel MJ, Kaza RK, Bolus DN, Boll DT, Rofsky NM, De Cecco CN, Foley WD, Morgan DE, Schoepf UJ, Sahani DV, Shuman WP, Vrtiska TJ, Yeh BM, Berland LL (2016) White paper of the Society of Computed Body Tomography and Magnetic Resonance on dual-energy CT. Part 1: technology and terminology. J Comput Assist Tomogr 40(6):841–845

    Article  PubMed  Google Scholar 

  10. Foley WD, Shuman WP, Siegel MJ, Sahani DV, Boll DT, Bolus DN, De Cecco CN, Kaza RK, Morgan DE, Schoepf UJ, Vrtiska TJ, Yeh BM, Berland LL (2016) White paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, part 2: radiation dose and iodine sensitivity. J Comput Assist Tomogr 40(6):846–850

    Article  PubMed  Google Scholar 

  11. De Cecco CN, Schoepf UJ, Steinbach L, Boll DT, Foley WD, Kaza RK, Bolus DN, Morgan DE, Sahani DV, Shuman WP, Siegel MJ, Vrtiska TJ, Yeh BM, Berland LL (2017) White paper of the Society of Computed Body Tomography and Magnetic Resonance on Dual-Energy CT, part 3: vascular, cardiac, pulmonary, and musculoskeletal applications. J Comput Assist Tomogr 41(1):1–7

    Article  PubMed  Google Scholar 

  12. Zhao Y, Wu Y, Zuo Z, Cheng S (2017) CT angiography of the kidney using routine CT and the latest Gemstone Spectral Imaging combination of different noise indexes: image quality and radiation dose. Radiol Med 122(5):327–336

    Article  PubMed  Google Scholar 

  13. Rassouli N, Etesami M, Dhanantwari A, Rajiah P (2017) Detector-based spectral CT with a novel dual-layer technology: principles and applications. Insights Imaging 8(6):589–598

    Article  PubMed  PubMed Central  Google Scholar 

  14. Almeida IP, Schyns LE, Öllers MC, van Elmpt W, Parodi K, Landry G, Verhaegen F (2017) Dual-energy CT quantitative imaging: a comparison study between twin-beam and dual-source CT scanners. Med Phys 44(1):171–179

    Article  CAS  PubMed  Google Scholar 

  15. Euler A, Obmann MM, Szucs-Farkas Z, Mileto A, Zaehringer C, Falkowski AL, Winkel DJ, Marin D, Stieltjes B, Krauss B, Schindera ST (2018) Comparison of image quality and radiation dose between split-filter dual-energy images and single-energy images in single-source abdominal CT. Eur Radiol 28(8):3405–3412

    Article  PubMed  Google Scholar 

  16. Martine RJ, Santangelo T, Colas L, Jean-Baptiste F, Duhamel A, Deschildre A, Remy J (2017) Radiation dose levels in pediatric chest CT: experience in 499 children evaluated with dual-source single-energy CT. Pediatr Radiol 47(2):161–168

    Article  PubMed  Google Scholar 

  17. Li M, Zhang GM, Zhao JS, Jiang ZW, Peng ZH, Jin ZT, Sun G (2014) Diagnostic performance of dual-source CT coronary angiography with and without heart rate control: systematic review and meta-analysis. Clin Radiol 69(2):163–171

    Article  CAS  PubMed  Google Scholar 

  18. Han BK, Overman DM, Grant K (2013) Non-sedated, free breathing cardiac CT for evaluation of complex congenital heart disease in neonates. J Cardiovasc Comput Tomogr 7:354–360

    Article  PubMed  Google Scholar 

  19. Tucker EW, Jain SK, Mahesh M (2017) Balancing the risks of radiation and anesthesia in pediatric patients. J Am Coll Radiol 14(11):1459–1461

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kino A, Zucker EJ, Honkanen A, Kneebone J, Wang J, Chan F, Newman B (2019) Ultrafast pediatric chest computed tomography: comparison of free-breathing versus breath-hold imaging with and without anesthesia in young children. Pediatr Radiol 49(3):301–307

    Article  PubMed  Google Scholar 

  21. Leipsic J, Abbara S, Achenbach S (2014) SCCT guidelines for the interpretation and reporting of coronary CT angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr 8:342–358

    Article  PubMed  Google Scholar 

  22. Meyer M, Haubenreisser H, Schoepf UJ, Vliegenthart R, Leidecker C, Allmendinger T, Lehmann R, Sudarski S, Borggrefe M, Schoenberg SO, Henzler T (2014) Closing in on the K edge: coronary CT angiography at 100, 80, and 70 kV-initial comparison of a second- versus a third-generation dual-source CT system. Radiology 273:373–382

    Article  PubMed  Google Scholar 

  23. Fleischmann U, Pietsch H, Korporaal JG, Flohr TG, Uder M, Jost G, Lell MM (2018) Impact of contrast media concentration on low-kilovolt computed tomography angiography: a systematic preclinical approach. Invest Radiol 53(5):264–270

    Article  PubMed  Google Scholar 

  24. Saake M, Lell MM, Rompel O, Gloeckler M, May M, Eller A, Achenbach S, Uder M, Wuest W (2014) Contrast medium application in pediatric high-pitch cardiovascular CT angiography: manual or power injection? J Cardiovasc Comput Tomogr 8(4):315–322

    Article  PubMed  Google Scholar 

  25. Stenzel F, Rief M, Zimmermann E (2014) Contrast agent bolus tracking with a fixed threshold or a manual fast start for coronary CT angiography. Eur Radiol 24:1229–1238

    Article  PubMed  Google Scholar 

  26. Sorantin E, Weissensteiner S, Hasenburger G, Riccabona M (2013) CT in children–dose protection and general considerations when planning a CT in a child. Eur J Radiol 82:1043–1049

    Article  CAS  PubMed  Google Scholar 

  27. Sun K, Liu GR, Li YC, Han RJ, Cui LF, Ma LJ, Li LG, Li CY (2013) Intravenous contrast material administration at high-pitch dual-source CT coronary angiography: bolus-tracking technique with shortened time of respiratory instruction versus test bolus technique. Chin Med Sci J 27(4):225–231

    Article  CAS  PubMed  Google Scholar 

  28. Gao Y, Lu B, Hou Z, Yu F, Cao H, Han L, Wu R (2012) Low dose dual-source CT angiography in infants with complex congenital heart disease: a randomized study. Eur J Radiol 81(7):e789–e795

    Article  PubMed  Google Scholar 

  29. Xie L, Liu Z, Zhang X, Xu K, Xu Q, Lu L, Hu C, Han S, Li J (2018) Electrocardiography-gated dual-source computed tomography in the detection of atrial septal aneurysm. Exp Ther Med 16(5):4260–4264

    PubMed  PubMed Central  Google Scholar 

  30. Kanie Y, Sato S, Tada A, Kanazawa S (2017) Image quality of coronary arteries on non-electrocardiography-gated high-pitch dual-source computed tomography in children with congenital heart disease. Pediatr Cardiol 38(7):1393–1399

    Article  PubMed  Google Scholar 

  31. Mueller-Lisse UG, Marwitz L, Tufman A, Huber RM, Zimmermann HA, Walterham A, Wirth S, Paolini M (2018) Less radiation, same quality: contrast-enhanced multi-detector computed tomography investigation of thoracic lymph nodes with one milli-sievert. Radiol Med 123(11):818–826

    Article  PubMed  Google Scholar 

  32. Li T, Zhao S, Liu J, Yang L, Huang Z, Li J, Luo C, Li X (2017) Feasibility of high-pitch spiral dual-source CT angiography in children with complex congenital heart disease compared to retrospective-gated spiral acquisition. Clin Radiol 72(10):864–870

    Article  CAS  PubMed  Google Scholar 

  33. La Grutta L, Marasà M, Toia P, Ajello D, Albano D, Maffei E, Grassedonio E, Novo G, Galia M, Caruso G, Novo S, Cademartiri F, Midiri M (2017) Integrated non-invasive approach to atherosclerosis with cardiac CT and carotid ultrasound in patients with suspected coronary artery disease. Radiol Med 122(1):16–21

    Article  PubMed  Google Scholar 

  34. Ippolito D, Fior D, Franzesi CT, Riva A, Casiraghi A, Sironi S (2017) Diagnostic accuracy of 256-row multidetector CT coronary angiography with prospective ECG-gating combined with fourth-generation iterative reconstruction algorithm in the assessment of coronary artery bypass: evaluation of dose reduction and image quality. Radiol Med 122(12):893–901

    Article  PubMed  Google Scholar 

  35. Koplay M, Kizilca O, Cimen D, Sivri M, Erdogan H, Guvenc O, Oc M, Oran B (2016) Prospective ECG-gated high-pitch dual-source cardiac CT angiography in the diagnosis of congenital cardiovascular abnormalities: radiation dose and diagnostic efficacy in a pediatric population. Diagn Interv Imaging 97(11):1141–1150

    Article  CAS  PubMed  Google Scholar 

  36. Messerli M, Dewes P, Scholtz JE, Arendt C, Wildermuth S, Vogl TJ, Bauer RW (2016) Evaluation of an adaptive detector collimation for prospectively ECG-triggered coronary CT angiography with third-generation dual-source CT. Eur Radiol 28(5):2143–2150

    Article  Google Scholar 

  37. Cesare E, Patriarca L, Panebianco L, Bruno F, Palumbo P, Cannizzaro E, Splendiani A, Barile A, Masciocchi C (2018) Coronary computed tomography angiography in the evaluation of intermediate risk asymptomatic individuals. Radiol Med 123(9):686–694

    Article  PubMed  Google Scholar 

  38. Alis J, Latson LA Jr, Haramati LB, Shmukler A (2018) Navigating the pulmonary perfusion map: dual-energy computed tomography in acute pulmonary embolism. J Comput Assist Tomogr 42(6):840–849

    Article  PubMed  Google Scholar 

  39. Hwang HJ, Hoffman EA, Lee CH (2017) The role of dual-energy computed tomography in the assessment of pulmonary function. Eur J Radiol 86:320–334

    Article  PubMed  Google Scholar 

  40. Rizzo S, Femia M, Radice D, Del Grande M, Franchi D, Origgi D, Buscarino V, Mauro A, Bellomi M (2018) Evaluation of deep myometrial invasion in endometrial cancer patients: is dual-energy CT an option? Radiol Med 123(1):13–19

    Article  PubMed  Google Scholar 

  41. Otrakji A, Digumarthy SR, Lo Gullo R, Flores EJ, Shepard JA, Kalra MK (2016) Dual-energy CT: spectrum of thoracic abnormalities. RadioGraphics 36(1):38–52

    Article  PubMed  Google Scholar 

  42. Hachulla AL, Lador F, Soccal PM, Montet X, Beghetti M (2016) Dual-energy computed tomographic imaging of pulmonary hypertension. Swiss Med Wkly 146:w14328

    PubMed  Google Scholar 

  43. Magarelli N, De Santis V, Marziali G, Menghi A, Burrofato A, Pedone L, Del Prete D, Iezzi R, de Waure C, D’andrea M, Leone A, Colosimo C (2018) Application and advantages of monoenergetic reconstruction images for the reduction of metallic artifacts using dual-energy CT in knee and hip prostheses. Radiol Med 123(8):593–600

    Article  PubMed  Google Scholar 

  44. Muto M, Giurazza F, Ambrosanio G, Vassallo P, Briganti F, Tecame M, Schena E, De Nicola M, Sgreccia A, Giannoni M, Peschillo S, Diana F, Guidetti G, Guarnieri G (2017) Stent-assisted coiling in ruptured cerebral aneurysms: multi-center experience in acute phase. Radiol Med 122(1):43–52

    Article  PubMed  Google Scholar 

  45. Niola R, Giurazza F, Torbica A, Schena E, Silvestre M, Maglione F (2017) Predelivery uterine arteries embolization in patients with placental implant anomalies: a cost-effective procedure. Radiol Med 122(1):77–79

    Article  PubMed  Google Scholar 

  46. Paolicchi F, Bastiani L, Guido D, Dore A, Aringhieri G, Caramella D (2018) Radiation dose exposure in patients affected by lymphoma undergoing repeat CT examinations: how to manage the radiation dose variability. Radiol Med 123(3):191–201

    Article  PubMed  Google Scholar 

  47. Compagnone G, Padovani R, D’Avanzo MA, Grande S, Campanella F, Rosi A, Italian Working Group on Interventional Radiology (2018) Summary of the Italian inter-society recommendations for radiation protection optimization in interventional radiology. Radiol Med 123(5):378–384

    Article  PubMed  Google Scholar 

  48. Marukawa Y, Sato S, Tanaka T, Tada A, Kanie Y, Kanazawa S (2017) Evaluating low-kV dual-source CT angiography by high-pitch spiral acquisition and iterative reconstruction in pediatric congenital heart disease patients. Acta Med Okayama 71(5):407–412

    PubMed  Google Scholar 

  49. Sun J, Zhang Q, Duan X, Zhang C, Wang P, Jia C, Liu Y, Peng Y (2018) Application of a full model-based iterative reconstruction (MBIR) in 80 kVp ultra-low-dose paranasal sinus CT imaging of pediatric patients. Radiol Med 123(2):117–124

    Article  PubMed  Google Scholar 

  50. Qin L, Ma Z, Yan F, Yang W (2018) Iterative model reconstruction (IMR) algorithm for reduced radiation dose renal artery CT angiography with different tube voltage protocols. Radiol Med 123(2):83–90

    Article  PubMed  Google Scholar 

  51. Chen B, Zhao S, Gao Y, Cheng Z, Duan Y, Das P, Wang X (2019) Image quality and radiation dose of two prospective ECG-triggered protocols using 128-slice dual-source CT angiography in infants with congenital heart disease. Int J Cardiovasc Imaging 35(5):937–945

    Article  CAS  PubMed  Google Scholar 

  52. Tomà P, Cannatà V, Genovese E, Magistrelli A, Granata C (2017) Radiation exposure in diagnostic imaging: wisdom and prudence, but still a lot to understand. Radiol Med 122(3):215–220

    Article  PubMed  Google Scholar 

  53. Kim JS, Kwon SM, Kim JM, Yoon SW (2017) New organ-based tube current modulation method to reduce the radiation dose during computed tomography of the head: evaluation of image quality and radiation dose to the eyes in the phantom study. Radiol Med 122(8):601–608

    Article  PubMed  Google Scholar 

  54. Ruffino MA, Fronda M, Discalzi A, Isoardi P, Bergamasco L, Ropolo R, Righi D, Fonio P (2018) Radiation dose during endovascular aneurysm repair (EVAR): upgrade of an angiographic system from standard to Eco mode. Radiol Med 123(12):966–972

    Article  PubMed  Google Scholar 

  55. Nardi C, Salerno S, Molteni R, Occhipinti M, Grazzini G, Norberti N, Cordopatri C, Colagrande S (2018) Radiation dose in non-dental cone beam CT applications: a systematic review. Radiol Med 123(10):765–777

    Article  PubMed  Google Scholar 

  56. Siegel MJ, Curtis WA, Ramirez-Giraldo JC (2016) Effects of dual-energy technique on radiation exposure and image quality in pediatric body CT. AJR Am J Roentgenol 207(4):826–835

    Article  PubMed  Google Scholar 

  57. Weinman JP, Mirksy DV, Jensen AM, Stence NV (2019) Dual energy head CT to maintain image quality while reducing dose in pediatric patients. Clin Imaging 93:83–86

    Article  Google Scholar 

  58. Agliata G, Schicchi N, Agostini A, Fogante M, Mari A, Maggi S, Giovagnoni A (2019) Radiation exposure related to cardiovascular CT examination: comparison between conventional 64-MDCT and third-generation dual-source MDCT. Radiol Med 124(8):753–761

    Article  PubMed  Google Scholar 

  59. Riccardi L, De Monte F, Cretti F, Pini S, Zucca S, Quattrocchi MG, Origgi D, Del Vecchio A, Giordano C, Marini P, Lisciandro F, Trevisiol E, Zefiro D, Cutaia C, D’Ercole L, Gabusi M, Scaggion A, Paiusco M (2018) Use of radiation dose index monitoring software in a multicenter environment for CT dose optimization. Radiol Med 123(12):944–951

    Article  PubMed  Google Scholar 

  60. Cheasty E, Mahboobani S, Rubens M, Nicol E (2018) The use of cardiovascular CT for the follow up of paediatric hypoplastic left heart syndrome. J Cardiovasc Comput Tomogr. https://doi.org/10.1016/j.jcct.2018.10.021

  61. Goo HW (2017) Serial changes in anatomy and ventricular function on dual-source cardiac computed tomography after the Norwood procedure for hypoplastic left heart syndrome. Pediatr Radiol 47(13):1776–1786

    Article  PubMed  Google Scholar 

  62. Hanneman K, Newman B, Chan F (2017) Congenital variants and anomalies of the aortic arch. Radiographics 37(1):32–51

    Article  PubMed  Google Scholar 

  63. Goudar SP, Shah SS, Shirali GS (2016) Echocardiography of coarctation of the aorta, aortic arch hypoplasia, and arch interruption: strategies for evaluation of the aortic arch. Cardiol Young 26(8):1553–1562

    Article  PubMed  Google Scholar 

  64. Yuan SM (2017) Ebstein’s anomaly: genetics, clinical manifestations, and management. Pediatr Neonatol 58(3):211–215

    Article  PubMed  Google Scholar 

  65. Silva GVRD, Miana LA, Caneo LF, Turquetto ALR, Tanamati C, Penha JG, Jatene FB, Jatene MB (2019) Early and long-term outcomes of surgical treatment of Ebstein’s anomaly. Braz J Cardiovasc Surg. https://doi.org/10.21470/1678-9741-2018-0333

  66. Goo HW (2018) Coronary artery anomalies on preoperative cardiac CT in children with tetralogy of Fallot or Fallot type of double outlet right ventricle: comparison with surgical findings. Int J Cardiovasc Imaging 34(12):1997–2009

    Article  PubMed  Google Scholar 

  67. Barbiero G, Groff S, Battistel M, Casarin A, Guarise A, Miotto D (2018) Are iatrogenic renal artery pseudoaneurysms more challenging to embolize when associated with an arteriovenous fistula? Radiol Med 123(10):742–752

    Article  PubMed  Google Scholar 

  68. Lapierre C, Dubois J, Rypens F, Raboisson MJ, Déry J (2016) Tetralogy of Fallot: preoperative assessment with MR and CT imaging. Diagn Interv Imaging 97(5):531–541

    Article  CAS  PubMed  Google Scholar 

  69. Leone MB, Giannotta M, Palazzini M, Cefarelli M, Martìn Suàrez S, Gotti E, Bacchi Reggiani ML, Zompatori M, Galiè N (2017) A new CT-score as index of hemodynamic changes in patients with chronic thromboembolic pulmonary hypertension. Radiol Med 122(7):495–504

    Article  PubMed  Google Scholar 

  70. Odawara Y, Kawamura N, Yamasaki Y, Hashimoto J, Ishikawa S, Honda H (2019) Evaluation of coronary artery variations using dual-source coronary computed tomography angiography in neonates with transposition of the great arteries. Jpn J Radiol 37(4):308–314

    Article  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Fogante.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interests associated with this study.

Ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schicchi, N., Fogante, M., Esposto Pirani, P. et al. Third-generation dual-source dual-energy CT in pediatric congenital heart disease patients: state-of-the-art. Radiol med 124, 1238–1252 (2019). https://doi.org/10.1007/s11547-019-01097-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-019-01097-7

Keywords

Navigation