Skip to main content
Log in

Setup margins and geometric uncertainties in intensity-modulated radiation therapy in treating pituitary adenomas: the experience of Lyon Sud Hospital

Margini di setup e incertezze geometriche nella radioterapia ad intensità modulata degli adenomi ipofisiari: l’esperienza dell’ospedale Lyon Sud

  • Radiotherapy / Radioterapia
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

The authors retrospectively evaluated the setup uncertainties in Intensity-Modulated Radiation Therapy (IMRT) for pituitary adenomas and verified the margins used in daily practice (3 mm).

Materials and methods

Craniocaudal (CC), anteroposterior (AP) and laterolateral (LL) displacements were measured during the first 3 days of treatment and then weekly by comparing two orthogonal images obtained by an electronic system of portal imaging with Digitally Reconstructed Radiographs (DRRs). Setup Margins (SM) were defined according to the International Commission on Radiation Units (ICRU)-62 formula, the Stroom equation and the van Herk equation. The systematic (Σ) and random (σ) errors of the population were calculated as standard deviation (SD) of the population mean and the mean of SDs for every patient, respectively.

Results

Twenty patients were treated by IMRT for pituitary adenomas, and a total of 231 measurements were obtained. Σ and σ were 0.6 and 1.3 mm, 0.8 and 1 mm, 1.2 and 1.5 mm in the AP, LL and CC direction, respectively. Larger setup margin was 2.4, 2.7 and 4 mm in the AP, LL and CC direction, respectively (van Herk formula).

Conclusions

IMRT is a highly sophisticated treatment technique that requires precise definition and optimisation of local setup errors and, finally, of the irradiated volumes. The role of image-guided RT in these kinds of treatments should be prospectively evaluated.

Riassunto

Obiettivo

Scopo del presente lavoro è stato valutare retrospettivamente le incertezze di setup nella Radioterapia ad Intensità Modulata (IMRT) degli adenomi ipofisiari e verificare i margini usati nella nostra pratica quotidiana (3 mm).

Materiali e metodi

Gli spostamenti cranio-caudali (CC), antero-posteriori (AP) e latero-laterali (LL) sono stati misurati durante i primi 3 giorni di trattamento e poi settimanalmente comparando due immagini ortogonali ottenute da un sistema elettronico di portal imaging e le Digitally Reconstructed Radiographs (DRRs). I margini di setup sono stati definiti secondo la formula dell’International Commission on Radiation Units (ICRU)-62, l’equazione di Stroom e l’equazione di Van-Herk. L’errore sistematico (Σ) e random (σ) della popolazione sono stati calcolati rispettivamente come deviazione standard della media della popolazione e come media delle deviazioni standard per ogni paziente.

Risultati

Venti pazienti sono stati trattati con IMRT per adenoma ipofisiario ed un totale di 231 misure sono state ottenute. L’errore sistematico (Σ) e random (σ) sono stati rispettivamente di 0,6 e 1,3 mm, 0,8 e 1 mm, 1,2 e 1,5 mm, rispettivamente nelle direzioni AP, LL e CC. Il maggiore setup margin calcolato è stato di 2,4, 2,7 e 4 mm rispettivamente nella direzione AP, LL and CC (formula di van Herk).

Conclusioni

La IMRT è una tecnica di trattamento altamente sofisticata che necessita di una definizione precisa ed ottimizzata degli errori di setup locali e, quindi, dei volumi da irradiare. Il ruolo dell’image guided radiation therapy in questo tipo di trattamenti deve essere valutato prospetticamente.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References/Bibliografia

  1. Hall WA, Luciano MG, Doppman JL et al (1994) Pituitary magnetic resonance imaging in normal human volunteers: Occultadenomas in the general population. Ann Intern Med 120:817–820

    Article  PubMed  CAS  Google Scholar 

  2. Mackley HB, Reddy CA, Lee SY et al (2007) Intensity-modulated radiotherapy for pituitary adenomas: the preliminary report of the Cleveland Clinic experience. Int J Radiat Oncol Biol Phys 67:232–239

    Article  PubMed  Google Scholar 

  3. Levy RP, Fabrikant JI, Frankel KA et al (1991) Heavy-charged particle radiosurgery of the pituitary gland: Clinical results of 840 patients. Stereotact Funct Neurosurg 57:22–35

    Article  PubMed  CAS  Google Scholar 

  4. Degerblad M, Rahn T, Bergstrand G (1986) Long-term results of stereotactic radiosurgery to the pituitary gland in Cushing’s disease. Acta Endocrinol 112:310–314

    PubMed  CAS  Google Scholar 

  5. Beclere A (1909) The radio-therapeutic treatment of tumours of the hypophysis, gigantism and acromegaly. Arch Roentgen Radiol 14:147

    Google Scholar 

  6. Petrovich Z, Jozsef G, Yu C, Apuzzo ML (2003) Radiotherapy and stereotactic radiosurgery for pituitary tumors. Neurosurg Clin N Am 14:147–166

    Article  PubMed  Google Scholar 

  7. Grigsby PW, Stokes S, Marks JE, Simpson JR (1988) Prognostic factors and results of radiotherapy alone in the management of pituitary adenomas. Int J Radiat Oncol Biol Phys 15:1103–1110

    Article  PubMed  CAS  Google Scholar 

  8. Latorzeff I, Mazurier J, Boutry C et al (2010) Benefit of intensity modulated and image-guided radiotherapy in prostate cancer. Cancer Radiother 14:479–487

    Article  PubMed  CAS  Google Scholar 

  9. Lafond C, Jouyaux F, Bellec J et al (2010) Which IMRT? From “step and shoot” to VMAT: physicist point of view. Cancer Radiother 14:539–549

    Article  PubMed  CAS  Google Scholar 

  10. Vieillot S, Fenoglietto P, Moscardo CL et al (2010) Which intensity modulated radiation therapy? From “step and shoot” to volumetric modulated arc therapy, point of view of the radiation oncologist. Cancer Radiother 14:550–553

    Article  PubMed  CAS  Google Scholar 

  11. Giske K, Stoiber EM, Schwarz M et al (2011) Local setup errors in imageguided radiotherapy for head and neck cancer patients immobilized with a custom-made device. Int J Radiat Oncol Biol Phys 80:582–589

    Article  PubMed  Google Scholar 

  12. van Mourik A, van Kranen S, den Hollander S et al (2011) Effects of setup errors and shape changes on breast radiotherapy. Int J Radiat Oncol Biol Phys 79:1557–1564

    Article  PubMed  Google Scholar 

  13. Ma J, Chang Z, Wang Z et al (2009) ExacTrac X-ray 6 degree-of-freedom image-guidance for intracranial noninvasive stereotactic radiotherapy: comparison with kilo-voltage conebeam CT. Radiother Oncol 93:602–608

    Article  PubMed  Google Scholar 

  14. ICRU (1993) Prescribing, recording and reporting photon beam therapy Report 50, 1993. ICRU, Bethesda

    Google Scholar 

  15. ICRU (1999) Prescribing, recording and reporting photon beam therapy (supplement to ICRU report 50), report 62, 1999. ICRU, Bethesda

    Google Scholar 

  16. Stroom JC, Heijmen BJ (2002) Geometrical uncertainties, radiotherapy planning margins, and the ICRU-62 report. Radiother Oncol 64:75–83

    Article  PubMed  Google Scholar 

  17. Johansen J, Bertelsen A, Hansen CR et al (2008) Set-up errors in patients undergoing image guided radiation treatment. Relationship to body mass index and weight loss. Acta Oncologica 47:1454–1458

    Article  PubMed  Google Scholar 

  18. Stroom JC, de Boer HC, Huizenga H, Visser AG (1999). Inclusion of geometrical uncertainties in radiotherapy treatment planning by means of coverage probability. Int J Radiat Oncol Biol Phys 43:905–919

    Article  PubMed  CAS  Google Scholar 

  19. Van Herk M (2004) Errors and margins in radiotherapy. Semin Radiat Oncol 14:52–64

    Article  PubMed  Google Scholar 

  20. Lleva RR, Inzucchi SE (2011) Diagnosis and management of pituitary adenomas. Curr Opin Oncol 23:53–60

    Article  PubMed  Google Scholar 

  21. Ali I, Tubbs J, Hibbitts K, Algan O et al (2010) Evaluation of the setup accuracy of a stereotactic radiotherapy head immobilization mask system using KV on-board imaging. J Appl Clin Med Phys 11:3192

    PubMed  Google Scholar 

  22. Schubert LK, Westerly DC, Tomé WA et al (2009) A comprehensive assessment by tumor site of patient setup using daily MVCT imaging from more than 3,800 helical tomotherapy treatments. Int J Radiat Oncol Biol Phys 73:1260–1269

    Article  PubMed  Google Scholar 

  23. Rosenthal SJ, Gall KP, Jackson M, Thornton AF Jr (1995) A precision cranial immobilization system for conformal stereotactic fractionated radiation therapy. Int J Radiat Oncol Biol Phys 33:1239–1245

    Article  PubMed  CAS  Google Scholar 

  24. Budrukkar A, Dutta D, Sharma D et al (2008) Comparison of geometric uncertainties using electronic portal imaging device in focal threedimensional conformal radiation therapy using different head supports. J Cancer Res Ther 4:70–76

    Article  PubMed  Google Scholar 

  25. Hurkmans CW, Remeijer P, Lebesque JV, Mijnheer BJ (2001) Set up verification using portal imaging: review of current clinical practice. Radiother Oncol 58:105–120

    Article  PubMed  CAS  Google Scholar 

  26. Marchand V, Dendalea R (2010) Normal tissue tolerance to external beam radiation therapy: Eye structures. Cancer Radiother 14:277–283

    Article  PubMed  CAS  Google Scholar 

  27. Fowler JF (2010) 21 years of biologically effective dose. Br J Radiol 83:554–568

    Article  PubMed  CAS  Google Scholar 

  28. Masi L, Casamassima F, Polli C et al (2008) Cone beam CT image guidance for intracranial stereotactic treatments: comparison with a frame guided set-up. Int J Radiat Oncol Biol Phys 71:926–933

    Article  PubMed  Google Scholar 

  29. Guckenberger M, Baier K, Guenther I et al (2007) Reliability of the bony anatomy in image-guided stereotactic radiotherapy of brain metastases. Int J Radiat Oncol Biol Phys 69:294–301

    Article  PubMed  Google Scholar 

  30. Wang JZ, Rice R, Pawlicki T et al (2010) Evaluation of patient setup uncertainty of optical guided frameless system for intracranial stereotactic radiosurgery. J Appl Clin Med Phys 11:3181

    PubMed  Google Scholar 

  31. Schubert LK, Westerly DC, Tomé WA et al (2009) A comprehensive assessment by tumor site of patient setup using daily MVCT imaging from more than 3,800 helical tomotherapy treatments. Int J Radiat Oncol Biol Phys 73:1260–1269

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. De Bari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Bari, B., Shakir, I.S., Chekrine, T. et al. Setup margins and geometric uncertainties in intensity-modulated radiation therapy in treating pituitary adenomas: the experience of Lyon Sud Hospital. Radiol med 118, 863–869 (2013). https://doi.org/10.1007/s11547-012-0883-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-012-0883-9

Keywords

Parole chiave

Navigation