Skip to main content
Log in

Dual-source CT coronary angiography: prospective versus retrospective acquisition technique

Angiografia coronarica mediante TC dual source: tecnica di acquisizione prospettica versus retrospettiva

  • Cardiac Radiology / Cardioradiologia
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

The aim of our work was to compare image quality and radiation dose in a group of patients who underwent cardiac dual-source computed tomography (DSCT) with prospective electrocardiographic (ECG) gating with those of a control group studied with retrospective gating.

Materials and methods

Sixty patients were randomly assigned to two groups of 30 individuals each. Patients with heart rates >70 bpm and body mass index (BMI) >30 kg/m2 were excluded. Group A was examined with prospective ECG gating and group B with retrospective gating. The dose-length product (DLP) was recorded to calculate the radiation dose, whereas the effective dose was normalised to a standard 12-cm scan of the heart.

Results

Applying the best reconstruction interval, 98.6% of segments in the prospective group and 99.3% in the retrospective group were diagnostic. No significant difference (p>0.05) in image quality was observed between groups. Mean normalised radiation dose was 4.91±0.4 mSv in the prospective-gating group and 14.62 mSv±4.36 in the retrospective-gating group (p<0.01).

Conclusions

Coronary CT with prospective ECG gating, a standard feature on new scanners, allows for a significant reduction in radiation dose without causing any significant decrease in image quality or in the number of segments assessed. The prospective technique is thus recommended for patients with heart rates £70 bpm and BMI £30 kg/m2.

Riassunto

Obiettivo

Lo scopo del nostro lavoro è di comparare la qualità d’immagine e la dose di radiazioni degli esami di un gruppo di pazienti sottoposto ad angiografia coronarica con tomografia computerizzata (TC) dual source (TCDS) con tecnica di sincronizzazione prospettica dell’elettrocardiogramma rispetto ad un gruppo di controllo studiato con tecnica di sincronizzazione retrospettiva.

Materiali e metodi

Sono stati studiati 60 pazienti randomizzati in due gruppi di 30 pazienti ciascuno. Sono stati esclusi dallo studio pazienti con frequenza cardiaca >70 battiti per minuto (bpm) e body mass index (BMI)>30 kg/m2. Il gruppo A è stato studiato con una tecnica di sincronizzazione prospettica, mentre nel gruppo B è stata applicata una tecnica retrospettiva. Per il calcolo della dose di radiazioni è stato registrato il dose lenght product (DLP) e la dose effettiva è stata normalizzata per la lunghezza di una scansione standard del cuore di 12 cm.

Risultati

Applicando il miglior intervallo di ricostruzione sono risultati diagnostici il 98,6% dei segmenti nel gruppo prospettico ed il 99,3% in quello retrospettivo. Non è stata osservata nessuna differenza significativa nella qualità delle immagini dei due gruppi (p>0,05). La dose normalizzata di radiazioni è stata di 4,91±0,4 mSv per il gruppo prospettico, e di 14,62 mSv±4,36 per il gruppo retrospettivo (p<0,01).

Conclusioni

La TC coronarica con tecnica di sincronizzazione prospettica, utilizzabile negli scanners di ultima generazione, permette una significativa riduzione della dose di radiazioni somministrata al paziente senza determinare alcuna riduzione rilevante nella qualità delle immagini e nel numero di segmenti valutabili. Per tale ragione, è attualmente consigliabile l’ utilizzo di tale tecnica nei soggetti che presentano una frequenza cardiaca inferiore ai 70 bpm ed un BMI inferiore ai 30 kg/m2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References/Bibliografia

  1. Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552–557

    Article  PubMed  Google Scholar 

  2. Achenbach S, Moselewski F, Ropers D et al (2004) Detection of calcified and noncalcified coronary atherosclerotic plaque by contrast-enhanced, submillimeter multidetector spiral computed tomography: a segmentbased comparison with intravascular ultrasound. Circulation 109:14–17

    Article  PubMed  Google Scholar 

  3. Leschka S, Alkadhi H, Plass A et al (2006) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487

    Article  Google Scholar 

  4. Cademartiri F, Maffei E, Notarangelo F et al (2008) 64-slice computed tomography coronary angiography: diagnostic accuracy in the real world. Radiol Med 113:163–180

    Article  PubMed  CAS  Google Scholar 

  5. Francone M, Napoli A, Carbone I et al (2007) Noninvasive imaging of the coronary arteries using a 64-row multidetector CT scanner: initial clinical experience and radiation dose concerns. Radiol Med 112:31–46

    Article  PubMed  CAS  Google Scholar 

  6. Hausleiter J, Meyer T, Hadamitzky M et al (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113:1305–1310

    Article  PubMed  Google Scholar 

  7. Brenner DJ, Hall EJ (2007) Computed tomography — an increasing source of radiation exposure. N Engl J Med 357:2277–2284

    Article  PubMed  CAS  Google Scholar 

  8. Runza G, La Grutta L, Alaimo V et al (2008) Influence of the heart rate in the selection of the optimal reconstruction phase in clinical routine Multislice Coronary Angiography. Radiol Med 113:644–657

    Article  PubMed  CAS  Google Scholar 

  9. Jakobs TF, Becker CR, Ohnesorge B et al (2002) Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 12:1081–1086

    Article  PubMed  Google Scholar 

  10. Abada HT, Larchez C, Daoud B et al (2006) MDCT of the coronary arteries: feasibility of low-dose CT with ECGpulsed tube current modulation to reduce radiation dose. AJR Am J Roentgenol 186:S387–S390

    Article  PubMed  Google Scholar 

  11. Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268

    Article  PubMed  Google Scholar 

  12. Rybicki FJ, Otero HJ, Steigner ML et al. Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging 24:535–546

  13. Husmann L, Valenta I, Gaemperli O et al (2008) Feasibility of low-dose coronary CT angiography: first experience with prospective ECGgating. Eur Heart J 29:191–197

    Article  PubMed  Google Scholar 

  14. Hendel RC, Patel MR, Kramer CM et al (2006) ACCF/ACR/SCCT/SCMR/ASNC/NAS CI/SCAI/SIR 2006 Appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging. J Am Coll Cardiol 48:1475–1497

    Article  PubMed  Google Scholar 

  15. Cademartiri F, La Grutta L, Runza G et al (2007) Influence of convolution filtering on coronary plaque attenuation values:observations in an ex vivo model of multislice computed tomography coronary angiography. Eur Radiol 17:1842–1849

    Article  PubMed  Google Scholar 

  16. Scanlon PJ, Faxon DP, Audet AM et al (1999) ACC/AHA guidelines for coronary angiography. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on Coronary Angiography). Developed in collaboration with the Society for Cardiac Angiography and Interventions. J Am Coll Cardiol 33:1756–1824

    Article  PubMed  CAS  Google Scholar 

  17. Menzel H, Schibilla H, Teunen D (eds) (2000) European guidelines on quality criteria for computed tomography. Publication no. EUR 16262 EN. European Commission, Luxembourg, pp. 735–738

  18. Shuman WP, Branch KR, May JM et al (2008) Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology 248:431–437

    Article  PubMed  Google Scholar 

  19. UNSCEAR (2000) Sources and effects of ionizing radiation: United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes. United Nations, New York

    Google Scholar 

  20. Bashore TM, Bates ER, Berger PB et al (2001) American College of Cardiology/Society for Cardiac Angiography and Interventions Clinical Expert Consensus Document on cardiac catheterization laboratory standards. A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol 37:2170–2214

    Article  PubMed  CAS  Google Scholar 

  21. Scheffel H, Alkadhi H, Leschka S et al (2008) Low-dose CT coronary angiography in the step-and-shoot mode: diagnostic performance. Heart 94:1132–1137

    Article  PubMed  CAS  Google Scholar 

  22. Herzog BA, Wyss CA, Husmann L et al (2009) First head-to-head comparison of effective radiation dose from low-dose CT with prospective ECG-triggering versus invasive coronary angiography. Heart Dis 95:1656–1661. doi:10.1136/hrt.2008.162420

    CAS  Google Scholar 

  23. Hirai N, Horiguchi J, Fujioka C et al (2008) Prospective versus retrospective ECG-gated 64-detector coronary CT angiography: assessment of image quality, stenosis, and radiation dose. Radiology 248:424–430

    Article  PubMed  Google Scholar 

  24. Pontone G, Andreini D, Bartorelli AL et al (2009) Diagnostic accuracy of coronary computed tomography angiography. A comparison between prospective and retrospective electrocardiogram triggering. J Am Coll Cardiol 54:346–355

    Article  PubMed  Google Scholar 

  25. Earls JP, Berman EL, Urban BA et al (2008) Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology 246:742–753

    Article  PubMed  Google Scholar 

  26. Einstein AJ, Sanz J, Dellegrottaglie S et al (2008) Radiation dose and cancer risk estimates in 16-slice computed tomography coronary angiography. J Nucl Cardiol 15:232–240

    Article  PubMed  Google Scholar 

  27. Baumüller S, Leschka S, Desbiolles L et al (2009) Dual-source versus 64- section CT coronary angiography at lower heart rates: comparison of accuracy and radiation dose. Radiology 253:56–64

    Article  PubMed  Google Scholar 

  28. Xu L, Yang L, Zhang Z et al (2009) Low-dose adaptive sequential scan for dual-source CT coronary angiography in patients with high heart rate: Comparison with retrospective ECG gating. Eur J Radiol [Epub ahead of print]. doi:10.1016/j.ejrad.2009.06.003

  29. Bastarrika G, De Cecco CN, Arraiza M et al (2008) Dual-Source CT for visualization of the coronary arteries in heart transplant patients with high heart rates. AJR Am J Roentgenol 191:448–454

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.N. De Cecco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Cecco, C., Buffa, V., Fedeli, S. et al. Dual-source CT coronary angiography: prospective versus retrospective acquisition technique. Radiol med 116, 178–188 (2011). https://doi.org/10.1007/s11547-010-0584-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-010-0584-2

Keywords

Parole chiave

Navigation