Skip to main content

Advertisement

Log in

A Multilayer Grow-or-Go Model for GBM: Effects of Invasive Cells and Anti-Angiogenesis on Growth

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The recent use of anti-angiogenesis (AA) drugs for the treatment of glioblastoma multiforme (GBM) has uncovered unusual tumor responses. Here, we derive a new mathematical model that takes into account the ability of proliferative cells to become invasive under hypoxic conditions; model simulations generate the multilayer structure of GBM, namely proliferation, brain invasion, and necrosis. The model is able to replicate and justify the clinical observation of rebound growth when AA therapy is discontinued in some patients. The model is interrogated to derive fundamental insights int cancer biology and on the clinical and biological effects of AA drugs. Invasive cells promote tumor growth, which in the long run exceeds the effects of angiogenesis alone. Furthermore, AA drugs increase the fraction of invasive cells in the tumor, which explain progression by fluid-attenuated inversion recovery (FLAIR) signal and the rebound tumor growth when AA is discontinued.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. http://mouldy.bic.mni.mcgill.ca/brainweb/.

  2. This excess could also be obtained with a huge supply in oxygen. As discussed in the Appendix, an overpopulation threshold equal to 0.99 has been reintroduced.

References

  • Alarcón T, Byrne HM, Maini PK (2003) A cellular automaton model for tumour growth in inhomogeneous environment. J Theor Biol 225:257–274

    Article  MathSciNet  Google Scholar 

  • Ambrosi D, Preziosi L (2002) On the closure of mass balance models for tumor growth. Math Models Methods Appl Sci 12:737

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson A, Rejniak K, Gerlee P, Quaranta V (2009) Microenvironment driven invasion: a multiscale multimodel investigation. J Math Biol 58:579–624

    Article  MathSciNet  MATH  Google Scholar 

  • Angot P, Bruneau CH, Fabrie P (1999) A penalization method to take into account obstacles in incompressible viscous flows. Numer Math 81:497–520

    Article  MathSciNet  MATH  Google Scholar 

  • Avni R, Cohen B, Neeman M (2011) Hypoxic stress and cancer: imaging the axis of evil in tumor metastasis. NMR Biomed 24:569–581

    Google Scholar 

  • Billy F, Ribba B, Saut O, Morre-Trouilhet H, Colin T, Bresch D, Boissel JP, Grenier E, Flandrois JP (2009) A pharmacologically-based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy. J Theor Biol 260:1–49

    Article  MathSciNet  Google Scholar 

  • Bresch D, Colin T, Grenier E, Ribba B, Saut O (2009) A viscoelastic model for avascular tumor growth. In: Discrete and continuous dynamical systems dynamical systems, differential equations and applications. 7th AIMS conference, suppl., pp 101–108

  • Bresch D, Colin T, Grenier E, Ribba B, Saut O (2010) Computational modeling of solid tumor growth: the avascular stage. SIAM J Sci Comput 32:2321–2344

    Article  MathSciNet  MATH  Google Scholar 

  • Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  Google Scholar 

  • Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, Carpentier AF, Hoang-Xuan K, Kavan P, Cernea D, Brandes AA, Hilton M, Abrey L, Cloughesy T (2014) Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 370:709–722

    Article  Google Scholar 

  • Clatz O, Sermesant M, Bondiau PY, Delingette H, Warfield SK, Malandain G, Ayache N (2005) Realistic simulation of the 3d growth of brain tumors in mr images coupling diffusion with mass effect. IEEE Trans Med Imaging 24:1334–1346

    Article  Google Scholar 

  • Colin T, Iollo A, Lagaert J, Saut O, (2013) An inverse problem for the recovery of the vascularization of a tumor. J Inverse Ill-Posed Probl (in press)

  • Collins D, Zijdenbos A, Kollokian V, Sled J, Kabani N, Holmes C, Evans A (2002) Design and construction of a realistic digital brain phantom. IEEE Trans Med Imaging 17:463–468

    Article  Google Scholar 

  • Cristini V, Lowengrub J (2010) Multiscale modeling of cancer: an integrated experimental and mathematical modeling approach. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • De Bock K, Mazzone M, Carmeliet P (2011) Antiangiogenic therapy, hypoxia, and metastasis: risky liaisons, or not? Nat Rev Clin Oncol 8:393–404

    Article  Google Scholar 

  • Drasdo D, Höhme S (2003) Individual-based approaches to birth and death in avascular tumors. Math Comput Model 37:1163–1175

    Article  MATH  Google Scholar 

  • Drblikova O, Handlovicova A, Mikula K (2009) Error estimates of the finite volume scheme for the nonlinear tensor-driven anisotropic diffusion. Appl Numer Math 59:2548–2570

    Article  MathSciNet  MATH  Google Scholar 

  • Drblikova O, Mikula K (2007) Convergence analysis of finite volume scheme for nonlinear tensor anisotropic diffusion in image processing. SIAM J Numer Anal 46:37–60

    Article  MathSciNet  MATH  Google Scholar 

  • Eymard R, Gallouet T, Herbin R (2000) Finite volume methods. Handb Numer Anal 7:713–1018

    MathSciNet  MATH  Google Scholar 

  • Frieboes HB, Lowengrub JS, Wise S, Zheng X, Macklin P, Bearer EL, Cristini V (2007) Computer simulation of glioma growth and morphology. NeuroImage 37:S59–S70

    Article  Google Scholar 

  • Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, Yung WKA, Paleologos N, Nicholas MK, Jensen R, Vredenburgh J, Huang J, Zheng M, Cloughesy T (2009) Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 27:4733–4740

    Article  Google Scholar 

  • Gerlee P, Anderson A (2009) Evolution of cell motility in an individual-based model of tumour growth. J Theor Biol 259:67–83

    Article  MathSciNet  Google Scholar 

  • Gerlee P, Nelander S (2012) The impact of phenotypic switching on glioblastoma growth and invasion. PLoS Comput Biol 8:e1002556

    Article  MathSciNet  Google Scholar 

  • Giese A (2003) Glioma invasion-pattern of dissemination by mechanisms of invasion and surgical intervention, pattern of gene expression and its regulatory control by tumorsuppressor p53 and proto-oncogene ets-1. Acta Neurochir Suppl 88:153–162

    Google Scholar 

  • Giese A, Bjerkvig R, Berens ME, Westphal M (2003) Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol 21:1624–1636

    Article  Google Scholar 

  • Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, Colman H, Chakravarti A, Pugh S, Won M, Jeraj R, Brown PD, Jaeckle KA, Schiff D, Stieber VW, Brachman DG, Werner-Wasik M, Tremont-Lukats IW, Sulman EP, Aldape KD, Curran WJ, Mehta MP (2014) A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med 370:699–708

    Article  Google Scholar 

  • Hatzikirou H, Basanta D, Simon M, Schaller K, Deutsch A (2010) ’go or grow’: the key to the emergence of invasion in tumour progression? Math Med Biol

  • Hatzikirou H, Basanta D, Simon M, Schaller K, Deutsch A (2012) ’Go or grow’: the key to the emergence of invasion in tumour progression? Math Med Biol 29:49–65

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang GS, Peng D (2000) Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J Sci Comput 21:2126–2143

    Article  MathSciNet  MATH  Google Scholar 

  • Keunen O, Johansson M, Oudin A, Sanzey M, Rahim SA, Fack F, Thorsen F, Taxt T, Bartos M, Jirik R, Miletic H, Wang J, Stieber D, Stuhr L, Moen I, Rygh CB, Bjerkvig R, Niclou SP (2011) Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci USA 108:3749–3754

    Article  Google Scholar 

  • Konukoglu E, Clatz O, Bjoern H, Wever MA, Stieltjes B, Mandonnet E, Delingette H, Ayache N (2010a) Image guided personalization of reaction-diffusion type tumor growth models using modified anisotropic eikonal equations. IEEE Trans Med Imaging 29:77–95

    Article  Google Scholar 

  • Konukoglu E, Clatz O, Bondiau PY, Delingette H, Ayache N (2010b) Extrapolating glioma invasion margin in brain magnetic resonance images: suggesting new irradiation margins. Med Image Anal 14:111–125

    Article  Google Scholar 

  • Kreisl TN, Kim L, Moore K, Duic P, Royce C, Stroud I, Garren N, Mackey M, Butman JA, Camphausen K, Park J, Albert PS, Fine HA (2009) Phase ii trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 27:740–745

    Article  Google Scholar 

  • Lagaert J (2011) Modélisation de la croissance tumorale: estimation de paramètres d’un modèle de croissance et introduction d’un modèle spécifique aux gliomes de tout grade. Ph.D. thesis. Université Bordeaux 1

  • Lamszus K, Kunkel P, Westphal M (2003) Invasion as limitation to anti-angiogenic glioma therapy. Acta Neurochir Suppl 88:169–177

    Google Scholar 

  • Louis D, Ohgaki H, Wiestler O, Cavenee W, Burger P, Jouvet A, Scheithauer B, Kleihues P (2007) The 2007 who classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  Google Scholar 

  • Macklin P, McDougall S, Anderson A, Chaplain M, Cristini V, Lowengrub J (2009) Multiscale modelling and nonlinear simulation of vascular tumour growth. J Math Biol 58:765–798. doi:10.1007/s00285-008-0216-9

    Article  MathSciNet  MATH  Google Scholar 

  • Mansury Y, Kimura M, Lobo J, Deisboeck TS (2002) Emerging patterns in tumor systems: simulating the dynamics of multicellular clusters with an agent-based spatial agglomeration model. J Theor Biol 219:343–370

    Article  MathSciNet  Google Scholar 

  • Pham K, Chauviere A, Hatzikirou H, Li X, Byrne HM, Cristini V, Lowengrub J (2012) Density-dependent quiescence in glioma invasion: instability in a simple reaction-diffusion model for the migration/proliferation dichotomy. J Biol Dyn 6(Suppl 1):54–71

    Article  MathSciNet  Google Scholar 

  • Plasswilm L, Tannapfel A, Cordes N, Demir R, Hoper K, Bauer J, Hoper J (2000) Hypoxia-induced tumour cell migration in an in vivo chicken model. Pathobiology 68:99–105

    Article  Google Scholar 

  • Provence P, Han X, Nabors LB, Fathallah-Shaykh HM (2011) Management of CNS tumors. publisher InTech. chapter anti-angiogenic therapy for malignant glioma: insights and future directions. pp 311–326

  • Raizer JJ, Grimm S, Chamberlain MC, Nicholas MK, Chandler JP, Muro K, Dubner S, Rademaker AW, Renfrow J, Bredel M (2010) A phase 2 trial of single-agent bevacizumab given in an every-3-week schedule for patients with recurrent high-grade gliomas. Cancer 116:5297–5305

    Article  Google Scholar 

  • Ramis-Conde I, Drasdo D, Anderson AR, Chaplain MA (2008) Modeling the influence of the e-cadherin-[beta]-catenin pathway in cancer cell invasion: a multiscale approach. Biophys J 95:155–165

    Article  Google Scholar 

  • Roose T, Chapman SJ, Maini PK (2007) Mathematical models of avascular tumor growth. SIAM Rev 49:179–208

    Article  MathSciNet  MATH  Google Scholar 

  • Schedin P, Keely PJ (2011) Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harb Perspect Biol 3:a003228

    Article  Google Scholar 

  • Stein AM, Demuth T, Mobley D, Berens M, Sander LM (2007) A mathematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment. Biophys J 92:356–365

    Article  Google Scholar 

  • Swanson K, Bridge C, Murray J, Alvord E (2003a) Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J Neurol Sci 216:1–10

    Article  Google Scholar 

  • Swanson KR (2008) Quantifying glioma cell growth and invasion in vitro. Math Comput Model 47:638–648

    Article  MathSciNet  MATH  Google Scholar 

  • Swanson KR, Alvord EC, Murray JD (2003b) Virtual resection of gliomas: effect of extent of resection on recurrence. Math Comput Model 37:1177–1190

    Article  MATH  Google Scholar 

  • Swanson KR, Rockne RC, Claridge J, Chaplain MA, Alvord EC, Anderson AR (2011) Quantifying the role of angiogenesis in malignant progression of gliomas: in silico modeling integrates imaging and histology. Cancer Res 71:7366–7375

    Article  Google Scholar 

  • Tang Z, Araysi L, Fathallah-Shaykh HM (2013) c-Src and neural Wiskott-Aldrich syndrome protein (N-WASP) promote low oxygen-induced accelerated brain invasion by gliomas. PLoS One 8:e75436

  • Tektonidis M, Hatzikirou H, Chauviere A, Simon M, Schaller K, Deutsch A (2011) Identification of intrinsic in vitro cellular mechanisms for glioma invasion. J Theor Biol 287:131–147

    Article  Google Scholar 

  • Tonn JC, Goldbrunner R (2003) Mechanisms of glioma cell invasion. Acta Neurochir Suppl 88:163–167

    Google Scholar 

  • Tralins KS, Douglas JG, Stelzer KJ, Mankoff DA, Silbergeld DL, Rostomily RC, Hummel S, Scharnhorst J, Krohn KA, Spence AM, Rostomilly R (2002) Volumetric analysis of 18F-FDG PET in glioblastoma multiforme: prognostic information and possible role in definition of target volumes in radiation dose escalation. J Nucl Med 43:1667–1673

    Google Scholar 

  • Weller M, Yung WK (2013) Angiogenesis inhibition for glioblastoma at the edge: beyond AVAGlio and RTOG 0825. Neuro-oncology 15:971

    Article  Google Scholar 

  • Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, Degroot J, Wick W, Gilbert MR, Lassman AB, Tsien C, Mikkelsen T, Wong ET, Chamberlain MC, Stupp R, Lamborn KR, Vogelbaum MA, van den Bent MJ, Chang SM (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28:1963–1972

    Article  Google Scholar 

  • Zuniga RM, Torcuator R, Jain R, Anderson J, Doyle T, Ellika S, Schultz L, Mikkelsen T (2009) Efficacy, safety and patterns of response and recurrence in patients with recurrent high-grade gliomas treated with bevacizumab plus irinotecan. J Neurooncol 91:329–336

    Article  Google Scholar 

Download references

Acknowledgments

HFS is supported by R01GM096191 from the National Institutes of Health. TC and HFS contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan M. Fathallah-Shaykh.

Appendix: Model Parameters and Implementation

Appendix: Model Parameters and Implementation

The parameters of the simulations of Table 1 are shown in Table 2. For implementation, the same point of view as in Colin et al. (2013) is chosen. The various numerical schemes and the main difficulties are presented.

1.1 Level-Set and Penalty Method

Brain geometry is very complex. Meshing it is difficult and involves a huge number of points. A level-set formulation is used in order to describe its boundary and to impose our boundary conditions with penalty methods (Angot et al. 1999). This allows us to use a Cartesian mesh. The distance to the boundary is chosen as a level-set function:

$$\begin{aligned} l :x \rightarrow {\left\{ \begin{array}{ll} + d \bigl (\mathbf {x}, \partial \Omega _\text {brain}\bigr ) &{} \text {if }\, \mathbf {x} \in \Omega _\text {brain}, \\ - d\bigl ( \mathbf {x}, \partial \Omega _\text {brain}\bigr ) &{} \text {if }\, \mathbf {x} \notin \Omega _\text {brain}, \end{array}\right. } \end{aligned}$$

where \(d\) denotes the classical distance in \(\mathbb {R}^2\) or \(\mathbb {R}^3\).

All the boundary conditions are no-flux conditions on \(\partial \Omega _C\). It is presented here on the equation satisfied by the pressure \(\pi \) obtained b taking the divergence of Eq. (11) and using Eq. (14). This equation together with the boundary condition \((K \nabla \pi )\cdot \mathbf {n} = 0\) (where K is a tensor) is replaced by:

$$\begin{aligned} - \nabla \cdot \bigl ( K^\varepsilon \nabla \pi ^\varepsilon \bigr ) = \left( m(C)P- \frac{B}{||B ||_{1, \Omega _\text {brain}}} \int _{\Omega _\text {brain}} m(C) P \text {d}\Omega \right) \text { on }\, \Omega , \end{aligned}$$

with \(\pi ^\varepsilon = 0\) on \(\partial \Omega ,\, \Omega \) being a box in which \(\Omega _\text {brain}\) is embedded. Here, \(K^\varepsilon \) is defined by:

$$\begin{aligned} K^\varepsilon = \chi _{\mathbf {x} \in \Omega _\text {brain}}K + \varepsilon \chi _{\mathbf {x} \notin \Omega _\text {brain}}. \end{aligned}$$

and \(\chi _{\mathbf {x} \in \Omega _\text {brain}}\) denotes the characteristic function of \(\Omega _\text {brain}\). As \(\varepsilon \rightarrow 0,\, \pi ^\varepsilon \) converge to \(\pi \) solution of (10):

$$\begin{aligned} - \nabla \cdot \bigl ( K \nabla \pi \bigr ) = \left( m(C)P- \frac{B}{||B ||_{1, \Omega _\text {brain}}} \int _{\Omega _\text {brain}} m(C) P \text {d}\Omega \right) \end{aligned}$$

on \(\omega _\text {brain}\) with \((K \nabla \pi )\cdot \mathbf {n} = 0\) on \(\partial \Omega _\text {brain}\).

1.2 Numerical Scheme

Concerning time discretization, a second-order splitting scheme is used. The main advantage of this strategy is that the resolution of system Eqs. (2), (8), (4), (7), and (15) on one time step is decomposed into a sequence of well-known problems: diffusion, convection, and ODEs. In order to benefit from Cartesian meshes, well-known high-order numerical schemes are used to discretize the equations in space (Jiang and Peng 2000; Eymard et al. 2000).

The fluxes are computed by means of centered discretizations. This provides second-order schemes. We refer to Drblikova and Mikula (2007), Drblikova et al. (2009) for more details on anisotropic diffusion. For diffusion equation, we use a Crank–Nicolson discretization in time in order to ensure second-order accuracy. Due to the diffusion term, the invasive cell density is quite smooth. The chemotaxis part on invasive cells is solved with a WENO scheme (Jiang and Peng 2000).

The coupling between advection and tumor growth on each density is more difficult to solve. Indeed, one has to be careful on the advection and mitosis to avoid a loss of mass: As advection at velocity \(\mathbf {v}\) is supposed to balance mass variation, they have to be discretized exactly at he same time. Our ”splitting philosophy” does not give an accurate outcome. The mass conservation could be improved using a RK2 scheme on time to solve Eqs. (2)–(11) as described in Colin et al. (2013).

Here, we choose another strategy. Let us rewrite the advection as a transport term and a ”divergence” term: \(\nabla \cdot \bigl ( u \mathbf {v} \bigr ) = \mathbf {v} \cdot \bigl (\nabla u \bigr ) + \bigl (\nabla \cdot \mathbf {v}\bigr ) u\). By observing that both the transport part—”\(\partial _{t}u + \mathbf {v} \cdot \bigl (\nabla u \bigl ) = \ldots \)”—and the other part (source terms and divergence part - \(div(\mathbf {v}) u\)) preserve the total density ”\(P+I+N+B= 1\)” (Eq. (10)), we propose the following discretization:

  1. 1.

    compute \(\widetilde{\mathcal {M}}_n := m(C_n) P_n\),

  2. 2.

    compute the loss \(\widetilde{\mathcal {B}}_n := - \frac{B_n}{||B_n ||_{1, \Omega _\text {brain}}} \int _{\Omega _\text {brain}} \mathcal {M}_n \text {d}\Omega \)

  3. 3.

    solve \(\nabla \cdot \bigl ( K \nabla \widetilde{\pi }_{n+1} \bigr ) = \bigl ( \widetilde{\mathcal {M}}_n- \widetilde{\mathcal {B}}_n \bigr )\) with a finite-volume scheme,

  4. 4.

    compute \(\widetilde{\mathbf {v}}_{n+1} = K \nabla \widetilde{\pi }_{n+1}\),

  5. 5.

    compute

    $$\begin{aligned} \widetilde{P}_{n+1} =\,&P_n + \Delta t \bigl [ F_\text {Weno}(P_n,\widetilde{\mathbf {v}}_{n+1}) - \bigl ( \widetilde{\mathcal {M}}_n -\widetilde{\mathcal {B}}_n \bigr )P_n +\widetilde{\mathcal {M}}_n \bigr ] ,\\ \widetilde{u}_{n+1} =\,&u_n + \Delta t \bigl [ F_\text {Weno}(u_n,\widetilde{\mathbf {v}}_{n+1}) -\bigl ( \widetilde{\mathcal {M}}_n -\widetilde{\mathcal {B}}_n \bigr ) u_n \bigr ]&u=I,N, \\ \widetilde{B}_{n+1} =\,&B_n + \Delta t \bigl [ F_\text {Weno}(B_n,\widetilde{\mathbf {v}}_{n+1}) - \bigl ( \widetilde{\mathcal {M}}_n -\widetilde{\mathcal {B}}_n \bigr )B_n - \widetilde{\mathcal {B}}_n \bigr ], \end{aligned}$$
  6. 6.

    compute \(\mathcal {M}_{n+1} := m(C_n) \widetilde{P}_{n+1}\),

  7. 7.

    compute \(\mathcal {B}_{n+1} := - \frac{\widetilde{B}_{n+1}}{||\widetilde{B}_{n+1} ||_{1, \Omega _\text {brain}}} \int _{\Omega _\text {brain}} \mathcal {M}_{n+1} \text {d}\Omega \),

  8. 8.

    solve \(\nabla \cdot \bigl ( K \nabla \pi _{n+1} \bigr ) = \bigl ( \mathcal {M}_{n+1}- \mathcal {B}_{n+1} \bigr )\)

  9. 9.

    compute \(\mathbf {v}_{n+1} = K \nabla \pi _{n+1}\)

  10. 10.

    compute

    $$\begin{aligned} P_{n+1} =&\frac{P_n+\widetilde{P}_{n+1}}{2} + \frac{\Delta t}{2} \biggl [ F_\text {Weno}(\widetilde{P}_{n+1},\mathbf {v}_{n+1}) - \bigl ( \mathcal {M}_{n+1} - \mathcal {B}_{n+1} \bigr )\widetilde{P}_{n+1}\\&+\mathcal {M}_{n+1} \biggr ] ,\\ I_{n+1} =&\frac{I_n+\widetilde{I}_{n+1}}{2} + \frac{\Delta t}{2} \biggl [ F_\text {Weno}(\widetilde{I}_{n+1},\mathbf {v}_{n+1}) - \bigl ( \mathcal {M}_{n+1} - \mathcal {B}_{n+1} \bigr )\widetilde{I}_{n+1}\biggr ] ,\\ N_{n+1} =&\frac{N_n+\widetilde{N}_{n+1}}{2} + \frac{\Delta t}{2} \biggl [ F_\text {Weno}(\widetilde{N}_{n+1},\mathbf {v}_{n+1}) - \bigl ( \mathcal {M}_{n+1} - \mathcal {B}_{n+1} \bigr )\widetilde{N}_{n+1}\biggr ] ,\\ B_{n+1} =&\frac{B_n+\widetilde{B}_{n+1}}{2} \!+\! \frac{\Delta t}{2} \biggl [ F_\text {Weno}(\widetilde{B}_{n+1},\mathbf {v}_{n+1}) \!-\! \bigl ( \mathcal {M}_{n+1} \!-\! \mathcal {B}_{n+1} \bigr )\widetilde{B}_{n+1} \!-\! \mathcal {B}_{n+1} \biggr ], \end{aligned}$$

where \(F_\text {Weno}(u, \mathbf {v})\) denotes the numerical computation of \(\mathbf {v}\nabla u\) with an WENO5 Scheme.

This discretization provides a second-order accuracy in time (Heun’s scheme as in Colin et al. 2013). There does not remain any splitting between advection and mass variation due to tumor growth and loss of \(B\). The other terms—such as transition between proliferative and invasive states, necrosis, oxygen concentration—are still dealt with by a splitting scheme.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saut, O., Lagaert, JB., Colin, T. et al. A Multilayer Grow-or-Go Model for GBM: Effects of Invasive Cells and Anti-Angiogenesis on Growth. Bull Math Biol 76, 2306–2333 (2014). https://doi.org/10.1007/s11538-014-0007-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-014-0007-y

Keywords

Navigation