Skip to main content

Advertisement

Log in

Dynamics Analysis of a Multi-strain Cholera Model with an Imperfect Vaccine

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A new two-strain model, for assessing the impact of basic control measures, treatment and dose-structured mass vaccination on cholera transmission dynamics in a population, is designed. The model has a globally-asymptotically stable disease-free equilibrium whenever its associated reproduction number is less than unity. The model has a unique, and locally-asymptotically stable, endemic equilibrium when the threshold quantity exceeds unity and another condition holds. Numerical simulations of the model show that, with the expected 50 % minimum efficacy of the first vaccine dose, vaccinating 55 % of the susceptible population with the first vaccine dose will be sufficient to effectively control the spread of cholera in the community. Such effective control can also be achieved if 50 % of the first vaccine dose recipients take the second dose. It is shown that a control strategy that emphasizes the use of antibiotic treatment is more effective than one that emphasizes the use of basic (non-pharmaceutical) anti-cholera control measures only. Numerical simulations show that, while the universal strategy (involving all three control measures) gives the best outcome in minimizing cholera burden in the community, the combined basic anti-cholera control measures and treatment strategy also has very effective community-wide impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alexanderian, A., Gobbert, M., Fister, K., Gaff, H., Lenhart, S., & Schaefer, E. (2011). An age-structured model for the spread of epidemic cholera: analysis and simulation. Nonlinear Anal., Real World Appl., 12, 3483–3498.

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson, R. M., & May, R. M. (1982). Population biology of infectious diseases. Berlin: Springer.

    Book  Google Scholar 

  • Blower, S. M., & Dowlatabadi, H. (1994). Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int. Stat. Rev., 62, 229–243.

    Article  MATH  Google Scholar 

  • Capasso, V., & Paveri-Fontana, S. L. (1979). A mathematical model for the 1973 cholera epidemic in the European Mediterranean region. Rev. épidémiol. Santé Publique, 27, 121–132.

    Google Scholar 

  • Carr, J. (1981). Applications of centre manifold theory. New York: Springer.

    Book  MATH  Google Scholar 

  • Castillo-Chavez, C., & Song, B. (2004). Dynamical models of tuberculosis and their applications. Math. Biosci. Eng., 1, 361–404.

    Article  MathSciNet  MATH  Google Scholar 

  • Clemens, J. D., Sack, D. A., Harris, J. R., van Loon, F., et al. (1990). Field trial of oral cholera vaccines in Bangladesh: results from three-year follow-up. Lancet, 335, 270–273.

    Article  Google Scholar 

  • Codeco, C. T. (2001). Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC Infect. Dis. doi:10.1186/1471-2334-1-1.

    Google Scholar 

  • Colwell, R. R., & Huq, A. (1994). Environmental reservoir of Vibrio cholerae, the causative agent of cholera. Ann. N.Y. Acad. Sci., 740, 44–53.

    Article  Google Scholar 

  • Diekmann, O., Heesterbeek, J. A. P., & Metz, J. A. J. (1990). On the definition and computation of the basic reproduction ratio \(\mathcal{R}_{0}\) in models for infectious disease in heterogeneous population. J. Math. Biol., 28, 365–382.

    Article  MathSciNet  MATH  Google Scholar 

  • Gaffga, N. H., Tauxe, R. V., & Mintz, E. D. (2007). Cholera: a new home land in Africa? Am. J. Trop. Med. Hyg., 77, 705–713.

    Google Scholar 

  • Ghosh, A., & Ramamurthy, T. (2011). Antimicrobials and cholera: are we stranded? Indian J. Med. Res., 133, 225–231.

    Google Scholar 

  • Hale, J. K. (1969). Ordinary differential equations. New York: Wiley.

    MATH  Google Scholar 

  • Hartley, D. M., Morris, J. G. Jr., & Smith, D. L. (2006). Hiperinfectivity: a critical element in the ability of V. cholerae to cause epidemics? PLoS Med., 3(1), 63–69.

    Article  Google Scholar 

  • Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM Rev., 42, 599–653.

    Article  MathSciNet  MATH  Google Scholar 

  • Hill, D. R., Ford, L., & Lalloo, D. G. (2006). Oral cholera vaccines: use in clinical practice. Lancet Infect. Dis., 7, 361–373.

    Article  Google Scholar 

  • Hove-Musekwa, S. D., Nyabadza, F., Chiyaka, C., Das, P., Tripathi, A., & Mukandavire, Z. (2011). Modelling and analysis of the effects of malnutrition in the spread of cholera. Math. Comput. Model., 53, 1583–1595.

    Article  MathSciNet  MATH  Google Scholar 

  • Islam, M., Miah, M., Hasan, M., Sack, R., & Albert, M. (1994). Detection of non-culturableVibrio cholerae O1 associated with a cyanobacterium from an aquatic environment in Bangladesh. Trans. R. Soc. Trop. Med. Hyg., 88, 298–299.

    Article  Google Scholar 

  • Kitaoka, M., Miyata, S. T., Unterweger, D., & Pukatzki, S. (2011). Antibiotic resistance mechanisms of Vibrio cholera. J. Med. Microbiol., 60, 397–407.

    Article  Google Scholar 

  • Longini, I. M. Jr., Nizam, A., Ali, M., Yunus, M., Shenvi, N., & Clemens, J. D. (2007). Controlling endemic cholera with oral vaccines. PLoS Med., 4(11), 1776–1783.

    Article  Google Scholar 

  • McLeod, R. G., Brewster, J. F., Gumel, A. B., & Slonowsky, D. A. (2006). Sensitivity and uncertainty analyses for a SARS model with time-varying inputs and outputs. Math. Biosci. Eng., 3(3), 527–544.

    Article  MathSciNet  MATH  Google Scholar 

  • Mahalanabis, A., Lopez, A. L., Sur, D., Deen, J., Manna, B., et al. (2008). A randomized, placebo-controlled trial of the bivalent killed, whole-cell, oral cholera vaccine in adults and children in a cholera endemic area in Kolkata, India. PLoS ONE, 3(6), 1–7.

    Article  Google Scholar 

  • Mandal, J., Sangeetha, V., Ganesan, V., Parveen, M., Preethi, V., Harish, B. N., Srinivasan, S., Parija, S. C., & Srinivasan, S. P. (2012). Third-generation cephalosporin-resistant Vibrio cholerae, India. Emerg. Infect. Dis. doi:10.3201/eid1808.111686.

    Google Scholar 

  • Pascual, M., Bouma, M. J., & Dobson, A. P. (2002). Cholera and climate: revisiting the quantitative evidence. Microbes Infect., 4(2), 237–245.

    Article  Google Scholar 

  • Sack, D. A. (2011). How many cholera deaths can be averted in Haiti? Lancet, 377, 1214–1216.

    Article  Google Scholar 

  • Safi, M. A., & Gumel, A. B. (2010). Global asymptotic dynamics of a model for quarantine and isolation. Discrete Contin. Dyn. Syst., Ser. B, 14, 209–231.

    Article  MathSciNet  MATH  Google Scholar 

  • Sanches, R. P., Ferreira, C. P., & Kraenkel, R. A. (2011). The role of immunity and seasonality in cholera epidemics. Bull. Math. Biol., 73, 2916–2931.

    Article  MathSciNet  MATH  Google Scholar 

  • Seidlein, L. V. (2007). Vaccines for cholera control: does herd immunity play a role? PLoS Med., 4(11), 1719–1721.

    Google Scholar 

  • Sepulveda, J., Gomez-Dantes, H., & Bronfman, M. (1992). Cholera in the Americas: an overview. Infection, 20, 243–248.

    Article  Google Scholar 

  • Sharomi, O., & Gumel, A. (2008). Dynamical analysis of a multi-strain model of HIV in the presence of anti-retroviral drugs. J. Biol. Dyn., 2, 323–345.

    Article  MathSciNet  MATH  Google Scholar 

  • Shuai, Z., & van den Driessche, P. (2011). Global dynamics of cholera models with differential infectivity. Math. Biosci., 234, 118–126.

    Article  MathSciNet  MATH  Google Scholar 

  • Smith, H. L., & Waltman, P. (1995). The theory of the chemostat. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Sur, D., et al. (2009). Efficacy and safety of a modified killed-whole-cell oral cholera vaccine in India: an interim analysis of a cluster-randomised, double-blind, placebo-controlled trial. Lancet, 349, 1694–1702.

    Article  Google Scholar 

  • Tian, J., & Wang, J. (2011). Global stability for cholera epidemic models. Math. Biosci., 232, 31–41.

    Article  MathSciNet  MATH  Google Scholar 

  • Thieme, H. R. (2003). Mathematics in population biology. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci., 180, 29–48.

    Article  MathSciNet  MATH  Google Scholar 

  • van Loon, F. P. L., Clemens, D., Chakraborty, J., et al. (1996). Field trial of inactivated cholera vaccines in Bangladesh: results from 5 years of follow-up. Vaccine, 14, 162–166.

    Article  Google Scholar 

  • World Health Organization (2001). Antimicrobial resistance in shigellosis, cholera and campylobacteriosis. http://www.who.int/drugresistance/Antimicrobial_resistance_in_shigellosis_cholera_and_cam.pdf. Accessed: 10 February 2013.

  • World Health Organization (2010a). High hopes for oral cholera vaccine. Bull. World Health Organ., 88(3), 165–166.

    Article  Google Scholar 

  • World Health Organzation (2010b). Cholera vaccines: a brief summary of the March 2010 position paper. http://www.who.int/immunization/Cholera_PP_Accomp_letter__Mar_10_2010.pdf. Accessed: 10 February 2013.

  • World Health Organzation (2012). Weekly epidemiological, record No. 31-32. http://www.who.int/wer/2012/wer8731_32.pdf. Accessed: 10 February 2013.

  • World Health Organization (2013). Media center: cholera. http://www.who.int/mediacentre/factsheets/fs107/en/. Accessed: 10 February 2013.

  • Zhou, X., & Cui, J. (2010). Modeling and stability analysis for a cholera model with vaccination. Math. Methods Appl. Sci., 34, 1711–1724.

    MathSciNet  Google Scholar 

  • Zuckerman, J. N., Rombo, L., & Fisch, A. (2007). The true burden and risk of cholera: implications for prevention and control. Lancet Infect. Dis., 7(8), 521–530.

    Article  Google Scholar 

Download references

Acknowledgements

ABG acknowledges, with thanks, the support in part of the Natural Science and Engineering Research Council (NSERC) of Canada. DYM acknowledges the support from the Centre for Global Public Health at the University of Manitoba. The authors are grateful to the anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abba B. Gumel.

Appendix: Proof of Theorem 4

Appendix: Proof of Theorem 4

Proof

Let \(\mathcal{R}_{\mathrm{vac}}>1\) and b 1 b 2>0 (so that the model (1) has a unique EEP, in line with Theorem 3). It is convenient to make the following change of variables:

Furthermore, let X=(x 1,x 2,x 3,x 4,x 5,x 6,x 7,x 8,x 9,x 10,x 11)T. Thus, the model (1) can be re-written in the form \(\frac{dX}{dt} = F(X)\), with F=(f 1,f 2,f 3,f 4,f 5,f 6,f 7,f 8,f 9,f 10,f 11)T, as follows:

(19)

The Jacobian of the system (19), at the associated DFE (\(\mathcal{E}_{0}\)), is given by

$$ J(\mathcal{E}_0)=[M_{11\times6} \ U_{11\times5}] $$

where

$$ M=\left ( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} -(\psi+\mu) & \omega&0&0&0&0\\ \psi & -(\omega+\sigma+\mu)&\gamma&0&0&0\\ 0 & \sigma & -(\gamma+\mu) & 0&0&0 \\ 0 & 0 & 0 & -k_1&0&0 \\ 0 & 0 & 0 & 0&-k_2&0 \\ 0 & 0 & 0 & \kappa&0&-k_4\\ 0 & 0 & 0 & \sigma_w&0&\alpha \\ 0&0 & 0 & 0&\sigma_r&0\\ 0&0&0&0&0&0\\ 0&0&0&0&0&\theta_a\\ 0&0&0&0&0&\phi_a\\ \end{array} \right ), $$
$$ U=\left ( \begin{array}{c@{\ }c@{\ }c@{\ }c@{\ }c} 0&0&0&0&{\frac{-\beta S^*}{K_B}}\\[4pt] 0&0&0&0&{\frac{-r_1\beta V_1^*}{K_B}}\\[4pt] 0&0&0&0&{\frac{-r_2\beta V_2^*}{K_B}}\\[4pt] 0&0&0&0&{\frac{\beta(f_1S^*+f_2r_1V_1^*+f_3r_2 V_2^*)}{K_B}}\\[4pt] 0&0&(1-q)\theta_t&0&{\frac{\beta[(1-f_1)S^*+(1-f_2)r_1V_1^*+(1-f_3)r_2 V_2^*]}{K_B}}\\ 0&0&0&0&0\\ -k_5&0&0&0&0\\ \eta&-k_6&0&0&0\\ \tau&0&-k_7&0&0\\ \theta_s&\theta_r&q\theta_t&-\mu&0\\ \phi_s&\phi_r&\phi_t&0&-k_3\\ \end{array} \right ). $$

Consider the case when \(\mathcal{R}_{\mathrm{vac}}=1\). Furthermore, suppose that β is chosen as a bifurcation parameter. Solving for β from \(\mathcal{R}_{\mathrm{vac}}=1\) gives

with

The transformed system (19), with β=β , has a hyperbolic equilibrium point (i.e., the linearized system has a simple eigenvalue with zero real part, and all other eigenvalues have negative real part), so that the center manifold theory (Carr 1981; Castillo-Chavez and Song 2004) can be used to analyze the dynamics of (19) near β=β .

It can be shown that the right eigenvector of \(J(\mathcal{E}_{0})|_{\beta=\beta^{*}}\), denoted by \({\bf w}\), is given by w=(w 1,w 2,…,w 10,w 11)T, with

(20)

It should be noted that w 4,w 5,…,w 10 are positive since they can easily be written in terms of w 11 (and not reported here.) Similarly, \(J(\mathcal{E}_{0})|_{\beta=\beta^{*}}\) has a left eigenvector, \({\bf v}\), given by v=(v 1,v 2,…,v 10,v 11), with

Consequently, it follows that the associated bifurcation coefficients, a and b (defined in Theorem 4.1 of Castillo-Chavez and Song 2004), are given, respectively, by

(21)
(22)

By substituting (20) in (21), and simplifying, it can be shown that the bifurcation coefficient, a, is negative. The proof is concluded using Part (iv) of Theorem 4.1 in Castillo-Chavez and Song (2004). □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safi, M.A., Melesse, D.Y. & Gumel, A.B. Dynamics Analysis of a Multi-strain Cholera Model with an Imperfect Vaccine. Bull Math Biol 75, 1104–1137 (2013). https://doi.org/10.1007/s11538-013-9845-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-013-9845-2

Keywords

Navigation