Skip to main content
Log in

Self-tolerance and Autoimmunity in a Regulatory T Cell Model

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

The class of immunosuppressive lymphocytes known as regulatory T cells (Tregs) has been identified as a key component in preventing autoimmune diseases. Although Tregs have been incorporated previously in mathematical models of autoimmunity, we take a novel approach which emphasizes the importance of professional antigen presenting cells (pAPCs). We examine three possible mechanisms of Treg action (each in isolation) through ordinary differential equation (ODE) models. The immune response against a particular autoantigen is suppressed both by Tregs specific for that antigen and by Tregs of arbitrary specificities, through their action on either maturing or already mature pAPCs or on autoreactive effector T cells. In this deterministic approach, we find that qualitative long-term behaviour is predicted by the basic reproductive ratio R 0 for each system. When R 0<1, only the trivial equilibrium exists and is stable; when R 0>1, this equilibrium loses its stability and a stable non-trivial equilibrium appears. We interpret the absence of self-damaging populations at the trivial equilibrium to imply a state of self-tolerance, and their presence at the non-trivial equilibrium to imply a state of chronic autoimmunity. Irrespective of mechanism, our model predicts that Tregs specific for the autoantigen in question play no role in the system’s qualitative long-term behaviour, but have quantitative effects that could potentially reduce an autoimmune response to sub-clinical levels. Our results also suggest an important role for Tregs of arbitrary specificities in modulating the qualitative outcome. A stochastic treatment of the same model demonstrates that the probability of developing a chronic autoimmune response increases with the initial exposure to self antigen or autoreactive effector T cells. The three different mechanisms we consider, while leading to a number of similar predictions, also exhibit key differences in both transient dynamics (ODE approach) and the probability of chronic autoimmunity (stochastic approach).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berzins, S.P., Boyd, R.L., Miller, J.F.A.P., 1998. The role of the thymus and recent thymic migrants in the maintenance of the adult peripheral lymphocyte pool. J. Exp. Med. 187, 1839–1848.

    Article  Google Scholar 

  • Bluestone, J.A., Tang, Q., 2005. How do CD4+CD25+ regulatory T cells control autoimmunity? Curr. Opin. Immunol. 17, 638–642.

    Article  Google Scholar 

  • Borghans, J.A.M., De Boer, R.J., Sercarz, E., Kumar, V., 1998. T cell vaccination in experimental autoimmune encephalomyelitis: a mathematical model. J. Immunol. 161, 1087–1093.

    Google Scholar 

  • Britton, N.F., 2003. Essential Mathematical Biology. Springer, Berlin.

    MATH  Google Scholar 

  • Brusko, T.M., Putnam, A.L., Bluestone, J.A., 2008. Human regulatory T cells: roles in autoimmune disease and therapeutic opportunities. Immunol. Rev. 223, 371–390.

    Article  Google Scholar 

  • Burroughs, N.J., de Oliveira, B.M.P.M., Pinto, A.A., 2006. Regulatory T cell adjustment of quorum growth thresholds and the control of local immune responses. J. Theor. Biol. 241, 134–141.

    Article  Google Scholar 

  • Burroughs, N.J., Oliveira, B.M.P.M., Pinto, A.A., Sequeira, H.J.T., 2008. Sensibility of the quorum growth thresholds controlling local immune responses. Math. Comput. Model. 47, 714–725.

    Article  MATH  MathSciNet  Google Scholar 

  • Carneiro, J., Paixão, T., Milutinovic, D., Sousa, J., Leon, K., Gardner, R., Faro, J., 2005. Immunological self-tolerance: lessons from mathematical modeling. J. Comput. Appl. Math. 184, 77–100.

    Article  MATH  MathSciNet  Google Scholar 

  • Carneiro, J., Leon, K., Carmalho, I., van den Dool, C., Gardner, R., Oliveira, V., Bergman, M.-L., Sepúlveda, N., Paixão, T., Faro, J., Demengeot, J., 2007. When three is not a crowd: a crossregulation model of the dynamics and repertoire selection of regulatory CD4+ T cells. Immunol. Rev. 216, 48–68.

    Google Scholar 

  • Cederbom, L., Hall, H., Ivars, F., 2000. CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur. J. Immunol. 30, 1538–1543.

    Article  Google Scholar 

  • Chan, C., Lechler, R.I., George, A.J.T., 2004. Tolerance mechanisms and recent progress. Transplant. Proc. 36(Supp. 2S), 561S–569S.

    Article  Google Scholar 

  • de Boer, R.J., Hogeweg, P., 1987. Immunological discrimination between self and non-self by precursor depletion and memory accumulation. J. Theor. Biol. 124, 343–369.

    Article  Google Scholar 

  • DeFranco, A.L., Locksley, R.M., Robertson, M., 2007. Immunity: The Immune Response in Infectious and Inflammatory Disease. New Science Press Ltd., London.

    Google Scholar 

  • DiPaolo, R.J., Brinster, C., Davidson, T.S., Andersson, J., Glass, D., Shevach, E.M., 2007. Autoantigen-specific TGFβ-induced Foxp3+ regulatory T cells prevent autoimmunity by inhibiting dendritic cells from activating autoreactive T cells. J. Immunol. 179, 4685–4693.

    Google Scholar 

  • Edelstein-Keshet, L., 1988. Mathematical Models in Biology. Random House, New York.

    MATH  Google Scholar 

  • Fehervari, Z., Sakaguchi, S., 2004. Control of Foxp3+ CD25+CD4+ regulatory T cell activation and function by dendritic cells. Int. Immunol. 16, 1769–1780.

    Article  Google Scholar 

  • Field, E.H., Kulhankova, K., Nasr, M.E., 2007. Natural Tregs, CD4+CD25+ inhibitory hybridomas, and their cell contact dependent suppression. Immunol. Res. 39, 62–78.

    Article  Google Scholar 

  • Gondek, D.C., Lu, L.-F., Quezada, S.A., Sakaguchi, S., Noelle, R.J., 2005. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J. Immunol. 174, 1783–1786.

    Google Scholar 

  • Greenbaum, D., Colangelo, C., Williams, K., Gerstein, M., 2003. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 4, 117.

    Article  Google Scholar 

  • Grossman, W.J., Verbsky, J.W., Barchet, W., Colonna, M., Atkinson, J.P., Ley, T.J., 2004. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21, 589–601.

    Article  Google Scholar 

  • Iwami, S., Takeuchi, Y., Miura, Y., Sasaki, T., Kajiwara, T., 2007. Dynamical properties of autoimmune disease models: tolerance, flare-up, dormancy. J. Theor. Biol. 246, 646–659.

    Article  MathSciNet  Google Scholar 

  • Janeway, C.A., Travers, P., Walport, M., Shlomchik, M.J., 2005. Immunobiology: The Immune System in Health and Disease, 6th edn. Garland, New York.

    Google Scholar 

  • Kim, P.S., Lee, P.P., Levy, D., 2007. Modeling regulation mechanisms in the immune system. J. Theor. Biol. 246, 33–69.

    Article  MathSciNet  Google Scholar 

  • Kryczek, I., Wei, S., Zou, L., Zhu, G., Mottram, P., Xu, H., Chen, L., Zou, W., 2006. Cutting edge: induction of B7-H4 on APCs through IL-10: novel suppressive mode for regulatory T cells. J. Immunol. 177, 40–44.

    Google Scholar 

  • León, K., Peréz, R., Lage, A., Carneiro, J., 2000. Modelling T-cell-mediated suppression dependent on interactions in multicellular conjugates. J. Theor. Biol. 207, 231–254.

    Article  Google Scholar 

  • León, K., Peréz, R., Lage, A., Carneiro, J., 2001. Three-cell interactions in T cell-mediated suppression? A mathematical analysis of its quantitative implications. J. Immunol. 166, 5356–5365.

    Google Scholar 

  • León, K., Lage, A., Carneiro, J., 2003. Tolerance and immunity in a mathematical model of T-cell mediated suppression. J. Theor. Biol. 225, 107–126.

    Article  Google Scholar 

  • León, K., Faro, J., Lage, A., Carneiro, J., 2004. Inverse correlation between the incidences of autoimmune disease and infection predicted by a model of T cell mediated tolerance. J. Autoimmun. 22, 31–42.

    Article  Google Scholar 

  • Mahaffy, J.M., Edelstein-Keshet, L., 2007. Modeling cyclic waves of circulating T cells in autoimmune diabetes. SIAM J. Appl. Math. 67, 915–937.

    Article  MATH  MathSciNet  Google Scholar 

  • Male, D., Brostoff, J., Roth, D.B., Roitt, I., 2006. Immunology, 7th edn. Elsevier, Amsterdam.

    Google Scholar 

  • Misra, N., Bayry, J., Lacroix-Desmazes, S., Kazatchkine, M.D., Kaveri, S.V., 2004. Cutting edge: human CD4+CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells. J. Immunol. 172, 4676–4680.

    Google Scholar 

  • Miyara, M., Sakaguchi, S., 2007. Natural regulatory T cells: mechanisms of suppression. TRENDS Mol. Med. 13, 108–116.

    Article  Google Scholar 

  • Moon, J.J., Chu, H.H., Pepper, M., McSorly, S.J., Jameson, S.C., Kedl, R.M., Jenkins, M.K., 2007. Naive CD4+ T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity 27, 203–213.

    Article  Google Scholar 

  • Mottet, C., Uhlig, H.H., Powrie, F., 2003. Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells. J. Immunol. 170, 3939–3943.

    Google Scholar 

  • Murray, J.D., 1989. Mathematical Biology. Springer, Berlin.

    MATH  Google Scholar 

  • Piccirillo, C.A., Shevach, E.M., 2004. Naturally-occurring CD4+CD25+ immunoregulatory T cells: central players in the arena of peripheral tolerance. Semin. Immunol. 16, 81–88.

    Article  Google Scholar 

  • Sahai, B., 2008. Private communication. March 2008.

  • Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M., Toda, M., 1995. Immunological self-tolerance maintained by activated T-cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164.

    Google Scholar 

  • Scheffold, A., Hühn, J., Höfer, T., 2005. Regulation of CD4+CD25+ regulatory T cell activity: it takes (IL-)two to tango. Eur. J. Immunol. 35, 1336–1341.

    Article  Google Scholar 

  • Scheffold, A., Murphy, K.M., Höfer, T., 2007. Competition for cytokines: Treg cells take all. Nat. Immunol. 8, 1285–1287.

    Article  Google Scholar 

  • Takahashi, T., Kuniyasu, Y., Toda, M., Sakaguchi, N., Itoh, M., Iwata, M., Shimizu, J., Sakaguchi, S., 1998. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 10, 1969–1980.

    Article  Google Scholar 

  • Tang, Q.Z., Adams, J.Y., Tooley, A.J., Bi, M.Y., Fife, B.T., Serra, P., Santamaria, P., Locksley, R.M., Krummel, M.F., Bluestone, J.A., 2006. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat. Immunol. 7, 83–92.

    Article  Google Scholar 

  • Toda, A., Piccirillo, C.A., 2006. Development and function of naturally occurring CD4+CD25+ regulatory T cells. J. Leukoc. Biol. 80, 458–470.

    Article  Google Scholar 

  • Wing, K., Fehervari, Z., Sakaguchi, S., 2006. Emerging possibilities in the development and function of regulatory T cells. Int. Immunol. 18, 991–1000.

    Article  Google Scholar 

  • Yamazaki, S., Iyoda, T., Tarbell, K., Olson, K., Velinzon, K., Inaba, K., Steinman, R.M., 2003. Direct expansion of functional CD25+ CD4+ regulatory T cells by antigen-processing dendritic cells. J. Exp. Med. 198, 235–247.

    Article  Google Scholar 

  • Yamazaki, S., Inaba, K., Tarbell, K.V., Steinman, R.M., 2006. Dendritic cells expand antigen-specific Foxp3+CD25+CD4+ regulatory T cells including suppressors of alloreactivity. Immunol. Rev. 212, 314–329.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Wahl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexander, H.K., Wahl, L.M. Self-tolerance and Autoimmunity in a Regulatory T Cell Model. Bull. Math. Biol. 73, 33–71 (2011). https://doi.org/10.1007/s11538-010-9519-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-010-9519-2

Keywords

Navigation