Skip to main content
Log in

Modelling Hematopoiesis Mediated by Growth Factors With Applications to Periodic Hematological Diseases

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Hematopoiesis is a complex biological process that leads to the production and regulation of blood cells. It is based upon differentiation of stem cells under the action of growth factors. A mathematical approach of this process is proposed to understand some blood diseases characterized by very long period oscillations in circulating blood cells. A system of three differential equations with delay, corresponding to the cell cycle duration, is proposed and analyzed. The existence of a Hopf bifurcation at a positive steady-state is obtained through the study of an exponential polynomial characteristic equation with delay-dependent coefficients. Numerical simulations show that long-period oscillations can be obtained in this model, corresponding to a destabilization of the feedback regulation between blood cells and growth factors, for reasonable cell cycle durations. These oscillations can be related to observations on some periodic hematological diseases (such as chronic myelogenous leukemia, for example).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adimy, M., Crauste, F., 2003. Global stability of a partial differential equation with distributed delay due to cellular replication. Nonlinear Anal. 54(8), 1469–1491, doi:10.1016/S0362-546X(03)00197-4.

    Google Scholar 

  • Adimy, M., Crauste, F., 2005. Existence, positivity and stability for a nonlinear model of cellular proliferation. Nonlinear Anal.: Real World Appl. 6(2), 337–366, doi:10.1016/j.nonrwa.2004.09.001.

    Google Scholar 

  • Adimy, M., Crauste, F., Pujo-Menjouet, L., 2005a. On the stability of a maturity structured model of cellular proliferation. Discrete Control Dyn. Syst. Ser. A 12(3), 501–522.

    Google Scholar 

  • Adimy, M., Crauste, F., Ruan, S., 2005b. Stability and Hopf bifurcation in a mathematical model of pluripotent stem cell dynamics. Nonlinear Anal.: Real World Appl. 6, 651–670.

    Article  MATH  MathSciNet  Google Scholar 

  • Adimy, M., Crauste, F., Ruan, S., 2005c. A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia. SIAM J. Appl. Math. 65, 1328–1352.

    Article  MATH  MathSciNet  Google Scholar 

  • Adimy, M., Pujo-Menjouet, L., 2003. Asymptotic behaviour of a singular transport equation modelling cell division. Discrete Control Dyn. Syst. Ser. B 3, 439–456.

    MathSciNet  MATH  Google Scholar 

  • Bélair, J., Mackey, M.C., Mahaffy, J.M., 1995. Age-structured and two-delay models for erythropoiesis. Math. Biosci. 128, 317–346.

    Article  MATH  Google Scholar 

  • Beretta, E., Kuang, Y., 2002. Geometric stability switch criteria in delay differential systems with delay dependent parameters. SIAM J. Math. Anal. 33, 1144–1165.

    Article  MATH  MathSciNet  Google Scholar 

  • Bernard, S., Bélair, J., Mackey, M.C., 2003. Oscillations in cyclical neutropenia: New evidence based on mathematical modeling. J. Theor. Biol. 223, 283–298, doi:10.1016/S0022-5193(03)00090-0.

    Article  Google Scholar 

  • Bernard, S., Pujo-Menjouet, L., Mackey, M.C., 2003. Analysis of cell kinetics using a cell division marker: Mathematical modeling of experimental data. Biophys. J. 84, 3414-3424.

    Google Scholar 

  • Bernard, S., Bélair, J., Mackey, M.C., 2004. Bifurcations in a white-blood-cell production model. C. R. Biol. 327, 201–210, doi:10.1016/j.crvi.2003.05.005.

    Article  Google Scholar 

  • Birgens, H.S., Karl, H., 1993. Reversible adult-onset cyclic haematopoiesis with a cycle length of 100 days. Br. J. Hematol. 83, 181–186.

    Google Scholar 

  • Burns, F.J., Tannock, I.F., 1970. On the existence of a G0 phase in the cell cycle. Cell. Tissue Kinet. 19, 321–334.

    Google Scholar 

  • Colijn, C., Mackey, M.C., 2005a. A mathematical model of hematopoiesis–-I. Periodic chronic myelogenous leukemia. J. Theor. Biol. 237, 117–132, doi:10.1016/j.jtbi.2005.03.033.

    Article  MathSciNet  Google Scholar 

  • Colijn, C., Mackey, M.C., 2005b. A mathematical model of hematopoiesis–-II. Cyclical neutropenia. J. Theor. Biol. 237, 133–146, doi:10.1016/j.jtbi.2005.03.034.

    Article  MathSciNet  Google Scholar 

  • Dyson, J., Villella-Bressan, R., Webb, G.F., 1996. A singular transport equation modelling a proliferating maturity structured cell population. Can. Appl. Math. Q. 4, 65–95.

    MATH  MathSciNet  Google Scholar 

  • Dyson, J., Villella-Bressan, R., Webb, G.F., 2000a. A nonlinear age and maturity structured model of population dynamics, I: Basic theory. J. Math. Anal. Appl. 242(1), 93–104, doi:10.1006/jmaa.1999.6656.

  • Dyson, J., Villella-Bressan, R., Webb, G.F., 2000b. A nonlinear age and maturity structured model of population dynamics, II: Chaos J. Math. Anal. Appl. 242(2), 255–270, doi:10.1006/jmaa.1999.6657.

  • Erslev, A.J., 1990. Production of erythrocytes. In: Williams, M.M. (Ed.), Hematology, McGraw-Hill, New-York, pp. 389–397.

  • Erslev, A.J., 1991. Erythropoietin titers in health and disease. Semin. Hematol. 28, 2–8.

    Google Scholar 

  • Fortin, P., Mackey, M.C., 1999. Periodic chronic myelogenous leukemia: Spectral analysis of blood cell counts and etiological implications. Brit. J. Haematol. 104, 336–345.

    Article  Google Scholar 

  • Hale, J., Verduyn Lunel, S.M., 1993. Introduction to Functional Differential Equations, Applied Mathematical Sciences, Vol. 99. Springer-Verlag, New York.

  • Haurie, C., Dale, D.C., Mackey, M.C., 1998. Cyclical neutropenia and other periodic hematological diseases: A review of mechanisms and mathematical models. Blood 92, 2629–2640.

    Google Scholar 

  • Haurie, C., Dale, D.C., Mackey, M.C., 1999. Occurrence of periodic oscillations in the differential blood counts of congenital, idiopathic and cyclical neutropenic patients before and during treatment with G-CSF. Exp. Hematol. 27, 401–409, doi:10.1016/S0301-472X(98)00061-7.

    Article  Google Scholar 

  • Hayes, N.D., 1950. Roots of the transcendental equation associated with a certain differential difference equation. J. Lond. Math. Soc. 25, 226–232.

    Article  MATH  MathSciNet  Google Scholar 

  • Hearn, T., Haurie, C., Mackey, M.C., 1998. Cyclical neutropenia and the peripheral control of white blood cell production. J. Theor. Biol. 192, 167–181, doi:10.1006/jtbi.1997.0589.

    Article  Google Scholar 

  • Lajtha, L.G., 1959. On DNA labeling in the study of the dynamics of bone marrow cell populations. In: Stohlman, F. Jr. (Ed.), The Kinetics of Cellular Proliferation. Grune and Stratton, New York, pp. 173–182.

  • Mackey, M.C., 1978. Unified hypothesis of the origin of aplastic anaemia and periodic hematopoïesis. Blood 51, 941–956.

    Google Scholar 

  • Mackey, M.C., 1979. Dynamic hematological disorders of stem cell origin. In: Vassileva-Popova, G., Jensen, E.V. (Eds.), Biophysical and Biochemical Information Transfer in Recognition. Plenum, New York, pp. 373–409.

  • Mackey, M.C., 1997. Mathematical models of hematopoietic cell replication and control. In: Othmer, H.G., Adler, F.R., Lewis, M.A., Dallon, J.C. (Eds.), The Art of Mathematical Modelling: Case Studies in Ecology, Physiology and Biofluids. Prentice-Hall, Englewood Cliffs, NJ, pp. 149–178.

  • Mackey, M.C., 2001. Cell kinetic status of haematopoietic stem cells. Cell Prolif. 34, 71–83.

    Article  Google Scholar 

  • Mackey, M.C., Milton, J., 1990. Feedback, delays, and the origins of blood cell dynamics. Commun. Theor. Biol. 1, 299–327.

    Google Scholar 

  • Mackey, M.C., Rey, A., 1993. Multistability and boundary layer development in a transport equation with retarded arguments. Can. Appl. Math. Q. 1, 1–21.

    Google Scholar 

  • Mackey, M.C., Rey, A., 1995a. Transitions and kinematics of reaction–convection fronts in a cell population model. Phys. D 80, 120–139.

    Article  MATH  Google Scholar 

  • Mackey, M.C., Rey, A., 1995b. Propagation of population pulses and fronts in a cell replication problem: Non-locality and dependence on the initial function. Phys. D 86, 373–395.

    Article  MATH  Google Scholar 

  • Mackey, M.C., Rudnicki, R., 1994. Global stability in a delayed partial differential equation describing cellular replication. J. Math. Biol. 33, 89–109.

    Article  MATH  MathSciNet  Google Scholar 

  • Mackey, M.C., Rudnicki, R., 1999. A new criterion for the global stability of simultaneous cell replication and maturation processes. J. Math. Biol. 38, 195–219.

    Article  MATH  MathSciNet  Google Scholar 

  • Mahaffy, J.M., Bélair, J., Mackey, M.C., 1998. Hematopoietic model with moving boundary condition and state dependent delay. J. Theor. Biol. 190, 135–146.

    Article  Google Scholar 

  • Metz, J.A.J., Diekmann, O., 1986. The Dynamics of Physiologically Structured Populations, Lecture Notes in Biomathematics, vol. 68. Springer-Verlag, Berlin.

  • Morley, A.A., Baikie, A., Galton, D., 1967. Cyclic leukocytosis as evidence for retention of normal homeostatic control in chronic granulocytic leukaemia. Lancet 2, 1320–1322.

    Article  Google Scholar 

  • Pujo-Menjouet, L., Bernard, S., Mackey, M. C., 2005. Long period oscillations in a G0 model of hematopoietic stem cells. SIAM J. Appl. Dyn. Syst. 4(2), 312–332.

    Article  MATH  MathSciNet  Google Scholar 

  • Pujo-Menjouet, L., Mackey, M.C., 2004. Contribution to the study of periodic chronic myelogenous leukemia. C. R. Biol. 327, 235–244.

    Article  Google Scholar 

  • Ruan, S., Wei, J., 2001. On the zeros of a third degree exponential polynomial with applications to a delayed model for the control of testosterone secretion. IMA J. Math. Appl. Med. Biol. 18, 41–52.

    Article  MATH  Google Scholar 

  • Sachs, L., 1993. The molecular control of hemopoiesis and leukemia. C. R. Acad. Sci. Paris 316, 882–891.

    Google Scholar 

  • Santillan, M., Bélair, J., Mahaffy, J.M., Mackey, M.C., 2000. Regulation of platelet production: The normal response to perturbation and cyclical platelet disease. J. Theor. Biol. 206, 585–603.

    Article  Google Scholar 

  • Shampine, L.F., Thompson, S., 2001. Solving DDEs in. Appl. Numer. Math. 37, 441–458. http://www.radford.edu/ thompson/webddes/.

    Article  MATH  MathSciNet  Google Scholar 

  • Umemura, T., Hirata, J., Kaneko, S., Nishimura, J., Motomura, S., Kozuru, M., Ibayashi, H., 1986. Periodical appearance of erythropoietin-independent erythropoiesis in chronic myelogenous leukemia with cyclic oscillation. Acta Haematol. 76(4), 230–234.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Adimya.

Additional information

1Research was partially supported by the INRIA Futurs, ANUBIS Team.

2Research was partially supported by the NSF and the University of Miami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adimya, M., Craustea, F. & Ruanb, S. Modelling Hematopoiesis Mediated by Growth Factors With Applications to Periodic Hematological Diseases. Bull. Math. Biol. 68, 2321–2351 (2006). https://doi.org/10.1007/s11538-006-9121-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-006-9121-9

Keywords

Navigation