Skip to main content

Advertisement

Log in

Impact of Human Activities on Disease-Spreading Mosquitoes in Urban Areas

  • Review
  • Published:
Journal of Urban Health Aims and scope Submit manuscript

Abstract

Urbanization is one of the leading global trends of the twenty-first century that has a significant impact on health. Among health challenges caused by urbanization, the relationship of urbanization between emergence and the spread of mosquito-borne infectious diseases (MBIDs) is a great public health concern. Urbanization processes encompass social, economic, and environmental changes that directly impact the biology of mosquito species. In particular, urbanized areas experience higher temperatures and pollution levels than outlying areas but also favor the development of infrastructures and objects that are favorable to mosquito development. All these modifications may influence mosquito life history traits and their ability to transmit diseases. This review aimed to summarize the impact of urbanization on mosquito spreading in urban areas and the risk associated with the emergence of MBIDs. Moreover, mosquitoes are considered as holobionts, as evidenced by numerous studies highlighting the role of mosquito–microbiota interactions in mosquito biology. Taking into account this new paradigm, this review also represents an initial synthesis on how human-driven transformations impact microbial communities in larval habitats and further interfere with mosquito behavior and life cycle in urban areas.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Johnson MTJ, Munshi-South J. Evolution of life in urban environments. Science. 2017;358:eaam8327.

    Article  PubMed  Google Scholar 

  2. Hara T. Demographic Sustainability. In: May JF, Goldstone JA, editors. International Handbook of Population Policies. Cham: Springer International Publishing; 2022. p. 759–80. https://doi.org/10.1007/978-3-031-02040-7_35.

    Chapter  Google Scholar 

  3. Liddle B. Urbanization and inequality/poverty. Urban. Science. 2017;1:35.

    Google Scholar 

  4. Rosenzweig ML. Species diversity in space and time. 1st ed: Cambridge University Press; 1995. https://www.cambridge.org/core/product/identifier/9780511623387/type/book. Accessed 4 May 1995.

  5. Mcdonald RI, Kareiva P, Forman RTT. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol Conserv. 2008;141:1695–703.

    Article  Google Scholar 

  6. Shochat E, Lerman SB, Anderies JM, Warren PS, Faeth SH, Nilon CH. Invasion, competition, and biodiversity loss in urban ecosystems. BioScience. 2010;60:199–208.

    Article  Google Scholar 

  7. Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B. Defaunation in the Anthropocene. Science. 2014;345:401–6.

    Article  CAS  PubMed  Google Scholar 

  8. Pathak VK, Mohan M. A notorious vector-borne disease: dengue fever, its evolution as public health threat. J Family Med Prim Care. 2019;8:3125–9.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Galea S, Vlahov D. Epidemiology and urban health research. In: Galea S, Vlahov D, editors. Handbook of Urban Health. Boston, MA: Springer; 2005. p. 259–76. https://doi.org/10.1007/0-387-25822-1_14.

    Chapter  Google Scholar 

  10. WHO. Paludisme 2020. https://www.who.int/fr/news-room/fact-sheets/detail/malaria.

    Google Scholar 

  11. Leta S, Beyene TJ, De Clercq EM, Amenu K, Kraemer MUG, Revie CW. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int J Infect Dis. 2018;67:25–35.

    Article  PubMed  Google Scholar 

  12. Brugman V, Hernández-Triana L, Medlock J, Fooks A, Carpenter S, Johnson N. The role of Culex pipiens L. (Diptera: Culicidae) in virus transmission in Europe. IJERPH. 2018;15:389.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kraemer MUG, Reiner RC, Brady OJ, Messina JP, Gilbert M, Pigott DM, et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat Microbiol. 2019;4:854–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Girard M, Nelson CB, Picot V, Gubler DJ. Arboviruses: a global public health threat. Vaccine. 2020;38:3989–94.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Eritja R, Escosa R, Lucientes J, Marquès E, Roiz D, Ruiz S. Worldwide invasion of vector mosquitoes: present European distribution and challenges for Spain. Biol Invasions. 2005;7:87–97.

    Article  Google Scholar 

  16. Harrus S, Baneth G. Drivers for the emergence and re-emergence of vector-borne protozoal and bacterial diseases. Int J Parasitol. 2005;35:1309–18.

    Article  CAS  PubMed  Google Scholar 

  17. Ferraguti M, Martínez-de la Puente J, Roiz D, Ruiz S, Soriguer R, Figuerola J. Effects of landscape anthropization on mosquito community composition and abundance. Sci Rep. 2016;6:29002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eder M, Cortes F, de Siqueira T, Filha N, Araújo de França GV, Degroote S, Braga C, et al. Scoping review on vector-borne diseases in urban areas: transmission dynamics, vectorial capacity and co-infection. Infect Dis Poverty. 2018;7:90.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Huang Y-JS, Higgs S, Vanlandingham DL. Emergence and re-emergence of mosquito-borne arboviruses. Curr Opin Virol. 2019;34:104–9.

    Article  PubMed  Google Scholar 

  20. Sutherst RW. Global change and human vulnerability to vector-borne diseases. Clin Microbiol Rev. 2004;17:136–73.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mogi M, Armbruster PA, Tuno N. Differences in responses to urbanization between invasive mosquitoes, Aedes japonicus japonicus (Diptera: Culicidae) and Aedes albopictus, in their native range, Japan. J Med Entomol. 2020;57:104–12.

    Article  PubMed  Google Scholar 

  22. Muhammad NAF, Kassim NFA, Majid AHA, Rahman AA, Dieng H, Avicor SW. Biting rhythm and demographic attributes of Aedes albopictus (Skuse) females from different urbanized settings in Penang Island, Malaysia under uncontrolled laboratory conditions. PloS One. 2020;15:e0241688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wilke ABB, Vasquez C, Carvajal A, Moreno M, Fuller DO, Cardenas G, et al. Urbanization favors the proliferation of Aedes aegypti and Culex quinquefasciatus in urban areas of Miami-Dade County, Florida. Sci Rep. 2021;11:22989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dom NC, Ahmad AH, Ismail R. Habitat characterization of Aedes Sp. breeding in urban hotspot area. Procedia Soc Behav Sci. 2013;85:100–9.

    Article  Google Scholar 

  25. Meyer Steiger DB, Ritchie SA, Laurance SGW. Mosquito communities and disease risk influenced by land use change and seasonality in the Australian tropics. Parasit Vectors. 2016;9:387.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pernat N, Kampen H, Jeschke JM, Werner D. Buzzing homes: using citizen science data to explore the effects of urbanization on indoor mosquito communities. Insects. 2021;12:374.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Orta-Pineda G, Abella-Medrano CA, Suzán G, Serrano-Villagrana A, Ojeda-Flores R. Effects of landscape anthropization on sylvatic mosquito assemblages in a rainforest in Chiapas, Mexico. Acta Tropica. 2021;216:105849.

    Article  PubMed  Google Scholar 

  28. Berling-Wolff S, Wu J. Modeling urban landscape dynamics: a review: Modeling urban landscapes. Ecol Res. 2004;19:119–29.

    Article  Google Scholar 

  29. McKinney ML. Urbanization as a major cause of biotic homogenization. Biol Conserv. 2006;127:247–60.

    Article  Google Scholar 

  30. Rochlin I, Faraji A, Ninivaggi DV, Barker CM, Kilpatrick AM. Anthropogenic impacts on mosquito populations in North America over the past century. Nat Commun. 2016;7:13604.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Čabanová V, Miterpáková M, Valentová D, Blažejová H, Rudolf I, Stloukal E, et al. Urbanization impact on mosquito community and the transmission potential of filarial infection in central Europe. Parasit Vectors. 2018;11:261.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Messina JP, Brady OJ, Golding N, Kraemer MUG, Wint GRW, Ray SE, et al. The current and future global distribution and population at risk of dengue. Nat Microbiol. 2019;4:1508–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Amelinda YS, Wulandari RA, Asyary A. The effects of climate factors, population density, and vector density on the incidence of dengue hemorrhagic fever in South Jakarta Administrative City 2016-2020: an ecological study. Acta Biomedica Atenei Parmensis. 2022;93:e2022323.

    Google Scholar 

  34. Wilke A, Chase C, Vasquez C, Carvajal A, Medina J, Petrie WD, et al. Urbanization creates diverse aquatic habitats for immature mosquitoes in urban areas. Sci Rep. 2019;9:15335.

    Article  PubMed  PubMed Central  Google Scholar 

  35. de Góes Cavalcanti LP, Oliveira R d MAB, Alencar CH. Changes in infestation sites of female Aedes aegypti in Northeast Brazil. Rev Soc Bras Med Trop. 2016;49:498–501.

    Article  Google Scholar 

  36. Wilke ABB, Vasquez C, Carvajal A, Medina J, Chase C, Cardenas G, et al. Proliferation of Aedes aegypti in urban environments mediated by the availability of key aquatic habitats. Sci Rep. 2020;10:12925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zahouli JBZ, Koudou BG, Müller P, Malone D, Tano Y, Utzinger J. Urbanization is a main driver for the larval ecology of Aedes mosquitoes in arbovirus-endemic settings in south-eastern Côte d’Ivoire. PLoS Negl Trop Dis. 2017;11:e0005751.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rajarethinam J, Ong J, Neo Z-W, Ng L-C, Aik J. Distribution and seasonal fluctuations of Ae. aegypti and Ae. albopictus larval and pupae in residential areas in an urban landscape. PLoS Negl Trop Dis. 2020;14:e0008209.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Moore KJ, Qualls W, Brennan V, Yang X, Caban-Martinez AJ. Mosquito control practices and Zika knowledge among outdoor construction workers in Miami-Dade County, Florida. J Occup Environ Med. 2017;59:e17–9.

    Article  PubMed  Google Scholar 

  40. Wilke ABB, Vasquez C, Petrie W, Caban-Martinez AJ, Beier JC. Construction sites in Miami-Dade County, Florida are highly favorable environments for vector mosquitoes. PloS One. 2018;13:e0209625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Santamouris M, Osmond P. Increasing green infrastructure in cities: impact on ambient temperature, air quality and heat-related mortality and morbidity. Buildings. 2020;10:233.

    Article  Google Scholar 

  42. Lõhmus M, Balbus J. Making green infrastructure healthier infrastructure. Infection Ecology & Epidemiology. 2015;5:30082.

    Article  Google Scholar 

  43. Oke TR. The energetic basis of the urban heat island. QJ Royal Met Soc. 1982;108:1–24.

    Google Scholar 

  44. Raj S, Paul SK, Chakraborty A, Kuttippurath J. Anthropogenic forcing exacerbating the urban heat islands in India. J Environ Manage. 2020:257. https://pubmed.ncbi.nlm.nih.gov/31989962/.

  45. Sachindra DA, Ng AWM, Muthukumaran S, Perera BJC. Impact of climate change on urban heat island effect and extreme temperatures: a case-study. QJR Meteorol Soc. 2016;142:172–86.

    Article  Google Scholar 

  46. Mentaschi L, Duveiller Bogdan GH, Zulian G, Corban C, Pesaresi M, Maes J, et al. Global long-term mapping of surface temperature shows intensified intra-city urban heat island extremes. Global Environmental Change-Human and Policy Dimensions. 2022;72:102441.

    Article  Google Scholar 

  47. May ML. Insect thermoregulation. Annu Rev Entomol. 1979;24:313–49.

    Article  Google Scholar 

  48. Lahondère C, Bonizzoni M. Thermal biology of invasive Aedes mosquitoes in the context of climate change. Current Opinion in Insect Science. 2022;51:100920.

    Article  PubMed  Google Scholar 

  49. Agyekum TP, Botwe PK, Arko-Mensah J, Issah I, Acquah AA, Hogarh JN, et al. A systematic review of the effects of temperature on anopheles mosquito development and survival: implications for malaria control in a future warmer climate. Int J Environ Res Public Health. 2021;18

  50. Lim A-Y, Cheong H-K, Chung Y, Sim K, Kim J-H. Mosquito abundance in relation to extremely high temperatures in urban and rural areas of Incheon Metropolitan City, South Korea from 2015 to 2020: an observational study. Parasit Vectors. 2021;14:559.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Paaijmans KP, Jacobs AFG, Takken W, Heusinkveld BG, Githeko AK, Dicke M, et al. Observations and model estimates of diurnal water temperature dynamics in mosquito breeding sites in western Kenya. Hydrol Process. 2008;22:4789–801.

    Article  Google Scholar 

  52. Minakawa N, Sonye G, Mogi M, Yan G. Habitat characteristics of Anopheles gambiae s.s. larvae in a Kenyan highland. Med Vet Entomol. 2004;18:301–5.

    Article  CAS  PubMed  Google Scholar 

  53. Kache PA, Eastwood G, Collins-Palmer K, Katz M, Falco RC, Bajwa WI, et al. Environmental determinants of aedes albopictus abundance at a northern limit of its range in the United States. Am J Trop Med Hyg. 2020;102:436–47.

    Article  PubMed  Google Scholar 

  54. Borel D-T, Elysée N, Abdoul T, Nk DL, Roland B, Edmond K, et al. Oviposition behavior of Culex quinquefasciatus and Anopheles coluzzii females according to the Ovitrap color and presence of fertilizer in breeding sites. Fortune J Health Sci. 2021; https://www.fortunejournals.com/articles/oviposition-behavior-of-culex-quinquefasciatus-and-anopheles-coluzzii-females-according-to-the-ovitrap-color-and-presence-of-ferti.html

  55. Hery L, Boullis A, Vega-Rúa A. Les propriétés biotiques et abiotiques des gîtes larvaires d’Aedes aegypti et leur influence sur les traits de vie des adultes (synthèse bibliographique). Biotechnol Agron Soc Environ. 2021:57–71.

  56. Bayoh MN, Lindsay SW. Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera: Culicidae). Bull Entomol Res. 2003;93:375–81.

    Article  CAS  PubMed  Google Scholar 

  57. Bellone R, Failloux A-B. The role of temperature in shaping mosquito-borne viruses transmission. Front Microbiol. 2020;11:584846.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Loetti V, Schweigmann N, Burroni N. Development rates, larval survivorship and wing length of Culex pipiens (Diptera: Culicidae) at constant temperatures. J Nat Hist. 2011;45:2203–13.

    Article  Google Scholar 

  59. Ciota AT, Matacchiero AC, Kilpatrick AM, Kramer LD. The effect of temperature on life history traits of Culex mosquitoes. J Med Entomol. 2014;51:55–62.

    Article  PubMed  Google Scholar 

  60. Delatte H, Gimonneau G, Triboire A, Fontenille D. Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, Vector of Chikungunya and Dengue in the Indian Ocean. J Med Entomol. 2009;46:33–41.

    Article  CAS  PubMed  Google Scholar 

  61. Christiansen-Jucht CD, Parham PE, Saddler A, Koella JC, Basáñez M-G. Larval and adult environmental temperatures influence the adult reproductive traits of Anopheles gambiae s.s. Parasit Vectors. 2015;8:456.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ezeakacha NF, Yee DA. The role of temperature in affecting carry-over effects and larval competition in the globally invasive mosquito Aedes albopictus. Parasit Vectors. 2019;12:123.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Nagy A, El-Zeiny A, Sowilem M, Atwa W, Elshaier M. Mapping mosquito larval densities and assessing area vulnerable to diseases transmission in Nile valley of Giza, Egypt. The Egyptian Journal of Remote Sensing and Space Science. 2022;25:63–71.

    Article  Google Scholar 

  64. Joshi DS. Effect of fluctuating and constant temperatures on development, adult longevity and fecundity in the mosquito Aedes krombeini. J Therm Biol. 1996;21:151–4.

    Article  Google Scholar 

  65. Blagrove MSC, Caminade C, Waldmann E, Sutton ER, Wardeh M, Baylis M. Co-occurrence of viruses and mosquitoes at the vectors’ optimal climate range: an underestimated risk to temperate regions? Barker CM, editor. PLoS Negl Trop Dis. 2017;11:e0005604.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Paaijmans KP, Heinig RL, Seliga RA, Blanford JI, Blanford S, Murdock CC, et al. Temperature variation makes ectotherms more sensitive to climate change. Glob Chang Biol. 2013;19:2373–80.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ruybal JE, Kramer LD, Kilpatrick AM. Geographic variation in the response of Culex pipiens life history traits to temperature. Parasit Vectors. 2016;9:116. https://parasitesandvectors.biomedcentral.com/articles/10.1186/s13071-016-1402-z#citeas.

  68. Shapiro LLM, Whitehead SA, Thomas MB. Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria. PLoS Biol. 2017;15:e2003489.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Murdock CC, Evans MV, McClanahan TD, Miazgowicz KL, Tesla B. Fine-scale variation in microclimate across an urban landscape shapes variation in mosquito population dynamics and the potential of Aedes albopictus to transmit arboviral disease. PLoS Negl Trop Dis. 2017;11:e0005640.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Novakova E, Woodhams DC, Rodríguez-Ruano SM, Brucker RM, Leff JW, Maharaj A, et al. Mosquito microbiome dynamics, a background for prevalence and seasonality of West Nile virus. Front Microbiol. 2017;8:526. http://journal.frontiersin.org/article/10.3389/fmicb.2017.00526/full.

  71. Onyango GM, Bialosuknia MS, Payne FA, Mathias N, Ciota TA, Kramer DL. Increase in temperature enriches heat tolerant taxa in Aedes aegypti midguts. Sci Rep. 2020;10:19135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Onyango MG, Lange R, Bialosuknia S, Payne A, Mathias N, Kuo L, et al. Zika virus and temperature modulate Elizabethkingia anophelis in Aedes albopictus. Parasit Vectors. 2021;14:573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pérez-Ramos DW, Ramos MM, Payne KC, Giordano BV, Caragata EP. Collection time, location, and mosquito species have distinct impacts on the mosquito microbiota. Front Trop Dis. 2022;3:896289.

    Article  Google Scholar 

  74. Villoarreal SM, Winokur O, Harrington LC. The impact of temperature and body size on fundamental flight tone variation in the mosquito vector Aedes aegypti (Diptera: Culicidae): implications for acoustic lures. J Med Entomol. 2017;54

  75. Phasomkusolsil S, Lerdthusnee K, Khuntirat B, Kongtak W, Pantuwatana K, Murphy JR. Effect of temperature on laboratory reared Anopheles dirus Peyton and Harrison and Anopheles sawadwongporni Rattanarithikul and Green. Southeast Asian J Trop Med Public Health. 2011;42:63–70.

    PubMed  Google Scholar 

  76. Rowley WA, Graham CL. The effect of temperature and relative humidity on the flight performance of female Aedes aegypti. J Insect Physiol. 1968;14:1251–7.

    Article  CAS  PubMed  Google Scholar 

  77. Reinhold J, Lazzari C, Lahondère C. Effects of the environmental temperature on Aedes aegypti and Aedes albopictus mosquitoes: a review. Insects. 2018;9:158.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Freire MG, Schweigmann NJ. Effect of temperature on the flight activity of culicids in Buenos Aires City. Argentina Journal of Natural History. 2009;43:2167–77.

    Article  Google Scholar 

  79. Huestis DL, Yaro AS, Traoré AI, Dieter KL, Nwagbara JI, Bowie AC, et al. Seasonal variation in metabolic rate, flight activity and body size of Anopheles gambiae in the Sahel. J Exp Biol. 2012;215:2013–21.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Huestis DL, Yaro AS, Traoré AI, Adamou A, Kassogué Y, Diallo M, et al. Variation in metabolic rate of Anopheles gambiae and A. arabiensis in a Sahelian village. J Exp Biol. 2011;214:2345–53.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Liu-Helmersson J, Stenlund H, Wilder-Smith A, Rocklöv J. Vectorial capacity of Aedes aegypti: effects of temperature and implications for global dengue epidemic potential. PloS One. 2014;9:e89783.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Su T, Mulla MS. Effects of temperature on development, mortality, mating and blood feeding behavior of Culiseta incidens (Diptera: Culicidae). J Vector Ecol. 2001;26:83–92.

    CAS  PubMed  Google Scholar 

  83. de Almeida Costa EAP, de Mendonça Santos EM, Correia JC, de Albuquerque CMR. Impact of small variations in temperature and humidity on the reproductive activity and survival of Aedes aegypti (Diptera, Culicidae). Rev Bras Entomol. 2010;54:488–93.

    Article  Google Scholar 

  84. Afrane YA, Githeko AK, Yan G. The ecology of Anopheles mosquitoes under climate change: case studies from the effects of deforestation in East African highlands: Ecology of anopheles under climate change. Ann N Y Acad Sci. 2012;1249:204–10.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Lardeux FJ, Tejerina RH, Quispe V, Chavez TK. A physiological time analysis of the duration of the gonotrophic cycle of Anopheles pseudopunctipennis and its implications for malaria transmission in Bolivia. Malar J. 2008;7:141.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Afrane YA, Lawson BW, Githeko AK, Yan G. Effects of microclimatic changes caused by land use and land cover on duration of gonotrophic cycles of Anopheles gambiae (Diptera: Culicidae) in Western Kenya Highlands. J Med Entomol. 2005;42:974–80.

    Article  PubMed  Google Scholar 

  87. Macdonald G. The epidemiology and control of malaria. The Epidemiology and Control of Malaria. 1957;

  88. Kamiya T, Greischar MA, Wadhawan K, Gilbert B, Paaijmans K, Mideo N. Temperature-dependent variation in the extrinsic incubation period elevates the risk of vector-borne disease emergence. Epidemics. 2020;30:100382.

    Article  Google Scholar 

  89. Liu Z, Zhang Z, Lai Z, Zhou T, Jia Z, Gu J, et al. Temperature increase enhances Aedes albopictus competence to transmit dengue virus. Front Microbiol. 2017;8:2337.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Dohm DJ, O’Guinn ML, Turell MJ. Effect of environmental temperature on the ability of Culex pipiens (Diptera: Culicidae) to transmit West Nile Virus. J Med Entomol. 2002;39:221–5.

    Article  PubMed  Google Scholar 

  91. Wimalasiri-Yapa BMCR, Stassen L, Hu W, Yakob L, McGraw EA, Pyke AT, et al. Chikungunya virus transmission at low temperature by Aedes albopictus mosquitoes. Pathogens. 2019;8:149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Winokur OC, Main BJ, Nicholson J, Barker CM. Impact of temperature on the extrinsic incubation period of Zika virus in Aedes aegypti. PLoS Negl Trop Dis. 2020;14:e0008047.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Mordecai EA, Paaijmans KP, Johnson LR, Balzer C, Ben-Horin T, de Moor E, et al. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Thrall P, editor. Ecol Lett. 2013;16:22–30.

    Article  PubMed  Google Scholar 

  94. Zouache K, Fontaine A, Vega-Rua A, Mousson L, Thiberge J-M, Lourenco-De-Oliveira R, et al. Three-way interactions between mosquito population, viral strain and temperature underlying chikungunya virus transmission potential. Proc R Soc B. 2014;281:20141078.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Mercier A, Obadia T, Carraretto D, Velo E, Gabiane G, Bino S, et al. Impact of temperature on dengue and chikungunya transmission by the mosquito Aedes albopictus. Sci Rep. 2022;12:6973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Murdock CC, Paaijmans KP, Cox-Foster D, Read AF, Thomas MB. Rethinking vector immunology: the role of environmental temperature in shaping resistance. Nat Rev Microbiol. 2012;10:869–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Samuel GH, Adelman ZN, Myles KM. Temperature-dependent effects on the replication and transmission of arthropod-borne viruses in their insect hosts. Current Opinion in Insect Science. 2016;16:108–13.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Mordecai EA, Caldwell JM, Grossman MK, Lippi CA, Johnson LR, Neira M, et al. Thermal biology of mosquito-borne disease. Ecol Lett. 2019;22:1690–708.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Klowden MJ, Briegel H. Mosquito gonotrophic cycle and multiple feeding potential: contrasts between Anopheles and Aedes (Diptera: Culicidae). J Med Entomol. 1994;31:618–22.

    Article  CAS  PubMed  Google Scholar 

  100. Swain V, Seth RK, Raghavendra K, Mohanty SS. Impact of temperature on susceptible and resistant strains of Culex quinquefasciatus to synthetic pyrethroids. Acta Trop. 2009;112:303–7.

    Article  CAS  PubMed  Google Scholar 

  101. Muturi EJ, Costanzo K, Kesavaraju B, Alto BW. Can pesticides and larval competition alter susceptibility of Aedes mosquitoes (Diptera: Culicidae) to arbovirus infection? Jnl Med Entom. 2011;48:429–36.

    Article  CAS  Google Scholar 

  102. Crutzen P. New directions: the growing urban heat and pollution “island” effect - impact on chemistry and climate. Atmos Environ. 2004;38:3539–40.

    Article  CAS  Google Scholar 

  103. Ulpiani G. On the linkage between urban heat island and urban pollution island: three-decade literature review towards a conceptual framework. Sci Total Environ. 2021;751:141727.

    Article  CAS  PubMed  Google Scholar 

  104. Deblonde T, Cossu-Leguille C, Hartemann P. Emerging pollutants in wastewater: a review of the literature. Int J Hyg Environ Health. 2011;214:442–8.

    Article  CAS  PubMed  Google Scholar 

  105. Orsini F, Kahane R, Nono-Womdim R, Gianquinto G. Urban agriculture in the developing world: a review. Agron Sustain Dev. 2013;33:695–720.

    Article  Google Scholar 

  106. Meier J, editor. Urban lighting, light pollution and society. New York, NY: Routledge; 2015.

  107. Ramasamy R, Surendran SN. Mosquito vectors developing in atypical anthropogenic habitats: global overview of recent observations, mechanisms and impact on disease transmission. J Vector Borne Dis. 2016;53:91.

    PubMed  Google Scholar 

  108. Liang L, Wang Z, Li J. The effect of urbanization on environmental pollution in rapidly developing urban agglomerations. J Clean Prod. 2019;237:117649.

    Article  Google Scholar 

  109. Kabir MI, Daly E, Maggi F. A review of ion and metal pollutants in urban green water infrastructures. Sci Total Environ. 2014;470–471:695–706.

    Article  PubMed  Google Scholar 

  110. WHO. List of essential medicines-22nd list. 2022. www.who.int/publications/i/item/WHO-MHP-HPS-EML-2021.02 .

  111. Güzel B, Canlı O, Çelebi A. Characterization, source and risk assessments of sediment contaminants (PCDD/Fs, DL-PCBs, PAHs, PCBs, OCPs, metals) in the urban water supply area. Appl Geochem. 2022;143:105394.

    Article  Google Scholar 

  112. Azunre GA, Amponsah O, Peprah C, Takyi SA, Braimah I. A review of the role of urban agriculture in the sustainable city discourse. Cities. 2019;93:104–19.

    Article  Google Scholar 

  113. Darriet F. Sugar-supplemented substrates contaminated by agricultural inputs favor the proliferation of Aedes albopictus (Diptera: Culicidae). Bull Soc Pathol Exot. 2018;111:205–11.

    Article  CAS  PubMed  Google Scholar 

  114. Prezoto M, Detoni M, Barbosa. Pest control potential of social wasps in small farms and urban gardens. Insects. 2019;10:192.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Darriet F, Corbel V. Influence des engrais de type NPK sur l’oviposition d’ Aedes aegypti. Parasite. 2008;15:89–92.

    Article  CAS  PubMed  Google Scholar 

  116. Young GB, Golladay S, Covich A, Blackmore M. Nutrient enrichment affects immature mosquito abundance and species composition in field-based mesocosms in the coastal plain of Georgia. Environ Entomol. 2014;43:1–8.

    Article  CAS  PubMed  Google Scholar 

  117. Anderson EM, Davis JA. Field evaluation of the response of Aedes albopictus (Stegomyia albopicta) to three oviposition attractants and different ovitrap placements using black and clear autocidal ovitraps in a rural area of Same, Timor-Leste. Med Vet Entomol. 2014;28:372–83.

    Article  CAS  PubMed  Google Scholar 

  118. Kibuthu TW, Njenga SM, Mbugua AK, Muturi EJ. Agricultural chemicals: life changer for mosquito vectors in agricultural landscapes? Parasit Vectors. 2016;9:500.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Girard M, Martin E, Vallon L, Raquin V, Bellet C, Rozier Y, et al. Microorganisms associated with mosquito oviposition sites: implications for habitat selection and insect life histories. Microorganisms. 2021;9:1589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zouache K, Martin E, Rahola N, Gangue MF, Minard G, Dubost A, et al. Larval habitat determines the bacterial and fungal microbiota of the mosquito vector Aedes aegypti. FEMS Microbiol Ecol. 2022;98:fiac016.

    Article  CAS  PubMed  Google Scholar 

  121. Sumba LA, Guda T, Deng AL, Hassanali A, Beier JC, BGJ K. Mediation of oviposition site selection in the African malaria mosquito Anopheles gambiae (Diptera: Culicidae) by semiochemicals of microbial origin. Int J Trop Insect Sci. 2004;24(3):260–5. https://doi.org/10.1079/IJT200433.

  122. Lindh JM, Kännaste A, Knols BGJ, Faye I, Borg-Karlson A-K. Oviposition responses of Anopheles gambiae s.s. (Diptera: Culicidae) and identification of volatiles from bacteria-containing solutions. J Med Entomol. 2008;45:1039–49.

    Article  CAS  PubMed  Google Scholar 

  123. Takken W, Knols BGJ. Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu Rev Entomol. 1999;44:131–57.

    Article  CAS  PubMed  Google Scholar 

  124. Hao X-H, Rong-Gui H, Jin-Shui W, Tang S-R, Luo X-Q. Effects of long-term fertilization on paddy soils organic nitrogen, microbial biomass, and microbial functional diversity. J Appl Ecol. 2010;21:84.

    Google Scholar 

  125. Ponnusamy L, Böröczky K, Wesson DM, Schal C, Apperson CS. Bacteria stimulate hatching of yellow fever mosquito eggs. PloS One. 2011;6:e24409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Muturi EJ, Ramirez JL, Rooney AP, Dunlap C. Association between fertilizer-mediated changes in microbial communities and Aedes albopictus growth and survival. Acta Trop. 2016;164:54–63.

    Article  PubMed  Google Scholar 

  127. Duguma D, Hall MW, Smartt CT, Neufeld JD. Effects of organic amendments on microbiota associated with the Culex nigripalpus mosquito vector of the Saint Louis encephalitis and West Nile viruses. mSphere. 2017, 2:e00387.

  128. Tang T, Boënne W, Desmet N, Seuntjens P, Bronders J, van Griensven A. Quantification and characterization of glyphosate use and loss in a residential area. Sci Total Environ. 2015;517:207–14.

    Article  CAS  PubMed  Google Scholar 

  129. Kanissery R, Gairhe B, Kadyampakeni D, Batuman O, Alferez F. Glyphosate: its environmental persistence and impact on crop health and nutrition. Plants. 2019;8:499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Baglan H, Lazzari CR, Guerrieri FJ. Glyphosate impairs learning in mosquito larvae (Aedes aegypti ) at field-realistic doses. J Exp Biol. 2018:jeb.187518.

  131. Bataillard D, Christe P, Pigeault R. Impact of field-realistic doses of glyphosate and nutritional stress on mosquito life history traits and susceptibility to malaria parasite infection. Ecol Evol. 2020;10:5079–88.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Morris A, Murrell EG, Klein T, Noden BH. Effect of two commercial herbicides on life history traits of a human disease vector, Aedes aegypti, in the laboratory setting. Ecotoxicology. 2016;25:863–70.

    Article  CAS  PubMed  Google Scholar 

  133. Portilla MA, Lawler SP. Herbicide treatment alters the effects of water hyacinth on larval mosquito abundance. J Vector Ecol. 2020;45:69–81.

    Article  PubMed  Google Scholar 

  134. Riaz MA, Poupardin R, Reynaud S, Strode C, Ranson H, David J-P. Impact of glyphosate and benzo[a]pyrene on the tolerance of mosquito larvae to chemical insecticides. Role of detoxification genes in response to xenobiotics☆. Aquat Toxicol. 2009;93:61–9.

    Article  CAS  PubMed  Google Scholar 

  135. Smith DFQ, Camacho E, Thakur R, Barron AJ, Dong Y, Dimopoulos G, et al. Glyphosate inhibits melanization and increases susceptibility to infection in insects. PLoS Biol. 2021;19:e3001182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Boyer S, Sérandour J, Lempérière G, Raveton M, Ravanel P. Do herbicide treatments reduce the sensitivity of mosquito larvae to insecticides? Chemosphere. 2006;65:721–4.

    Article  CAS  PubMed  Google Scholar 

  137. Poupardin R, Reynaud S, Strode C, Ranson H, Vontas J, David J-P. Cross-induction of detoxification genes by environmental xenobiotics and insecticides in the mosquito Aedes aegypti: impact on larval tolerance to chemical insecticides. Insect Biochem Mol Biol. 2008;38:540–51.

    Article  CAS  PubMed  Google Scholar 

  138. da Silveira Barcellos D, Procopiuck M, Bollmann HA. Management of pharmaceutical micropollutants discharged in urban waters: 30 years of systematic review looking at opportunities for developing countries. Sci Total Environ. 2022;809:151128.

    Article  Google Scholar 

  139. Verlicchi P, Galletti A, Petrovic M, Barceló D. Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options. J Hydrol. 2010;389:416–28.

    Article  CAS  Google Scholar 

  140. Nakada N, Tanishima T, Shinohara H, Kiri K, Takada H. Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment. Water Res. 2006;40:3297–303.

    Article  CAS  PubMed  Google Scholar 

  141. Pennington MJ, Prager SM, Walton WE, Trumble JT. Culex quinquefasciatus larval microbiomes vary with instar and exposure to common wastewater contaminants. Sci Rep. 2016;6:21969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Prud’homme SM, Chaumot A, Cassar E, David J-P, Reynaud S. Impact of micropollutants on the life-history traits of the mosquito Aedes aegypti: on the relevance of transgenerational studies. Environ Pollut. 2017;220:242–54.

    Article  PubMed  Google Scholar 

  143. Choi D, Al Baki MA, Ahmed S, Kim Y. Aspirin inhibition of prostaglandin synthesis impairs mosquito egg development. Cells. 2022;11:4092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gendrin M, Rodgers FH, Yerbanga RS, Ouédraogo JB, Basáñez M-G, Cohuet A, et al. Antibiotics in ingested human blood affect the mosquito microbiota and capacity to transmit malaria. Nat Commun. 2015;6:5921.

    Article  PubMed  Google Scholar 

  145. Souza Machado AA, Kloas W, Zarfl C, Hempel S, Rillig MC. Microplastics as an emerging threat to terrestrial ecosystems. Glob Chang Biol. 2018;24:1405–16.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Sun J, Dai X, Wang Q, van Loosdrecht MCM, Ni B-J. Microplastics in wastewater treatment plants: detection, occurrence and removal. Water Res. 2019;152:21–37.

    Article  CAS  PubMed  Google Scholar 

  147. Campanale C, Galafassi S, Savino I, Massarelli C, Ancona V, Volta P, et al. Microplastics pollution in the terrestrial environments: poorly known diffuse sources and implications for plants. Sci Total Environ. 2022;805:150431.

    Article  CAS  PubMed  Google Scholar 

  148. Staples CA, Dorn PB, Klecka GM, O’Block ST, Branson DR, Harris LR. Bisphenol A concentrations in receiving waters near US manufacturing and processing facilities. Chemosphere. 2000;40:521–5.

    Article  CAS  PubMed  Google Scholar 

  149. Liu J, Zhang L, Lu G, Jiang R, Yan Z, Li Y. Occurrence, toxicity and ecological risk of Bisphenol A analogues in aquatic environment – a review. Ecotoxicol Environ Saf. 2021;208:111481.

    Article  CAS  PubMed  Google Scholar 

  150. Rachel B. Impacts of bisphenol-A exposure during larval development in container dwelling mosquitoes. Front Endocrin. 2011. http://www.frontiersin.org/10.3389/conf.fendo.2011.04.00119/event_abstract.

  151. Gayathri A, Da E. Bisphenol A acts as developmental agonist in Culex quinquefasciatus Say. In Review. 2021. https://www.researchsquare.com/article/rs-401763/v1.

  152. Valsala AGR, Asirvadam ED. Bisphenol A acts as developmental agonist in Culex quinquefasciatus Say. Environ Sci Pollut Res. 2022;29:74428–41.

    Article  Google Scholar 

  153. Edwards C-C, McConnel G, Ramos D, Gurrola-Mares Y, Arole KD, Green MJ, et al. Microplastic ingestion perturbs the microbiome of Aedes albopictus and Aedes aegypti. In Review. 2023. https://doi.org/10.21203/rs.3.rs-2535203/v1.

  154. Li Y, Yuan Y, Sun C, Sun T, Liu X, Li J, et al. Heavy metals in soil of an urban industrial zone in a metropolis: risk assessment and source apportionment. Stoch Environ Res Risk Assess. 2020;34:435–46.

    Article  Google Scholar 

  155. Awolola TS, Odula AO, Obansa JB, Chukwurar NJ, Unyimadu JP. Anopheles gambiae ss breeding in polluted water bodies in urban Lagos, southwestern Nigeria. J Vector Borne Dis. 2007;44:241–4.

    CAS  PubMed  Google Scholar 

  156. Mireji PO, Keating J, Hassanali A, Mbogo CM, Nyambaka H, Kahindi S, et al. Heavy metals in mosquito larval habitats in urban Kisumu and Malindi, Kenya, and their impact. Ecotoxicol Environ Saf. 2008;70:147–53.

    Article  CAS  PubMed  Google Scholar 

  157. Jeanrenaud ACSN, Brooke BD, Oliver SV. Second generation effects of larval metal pollutant exposure on reproduction, longevity and insecticide tolerance in the major malaria vector Anopheles arabiensis (Diptera: Culicidae). Parasit Vectors. 2020;13:4.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Mireji PO, Keating J, Hassanali A, Mbogo CM, Muturi MN, Githure JI, et al. Biological cost of tolerance to heavy metals in the mosquito Anopheles gambiae. Med Vet Entomol. 2010;24:101–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Muturi CN, Rono MK, Masiga DK, Wachira FN, Ochieng R, Mireji PO. Transcriptional responses of Anopheles gambiae s.s mosquito larvae to chronic exposure of cadmium heavy metal. F1000Res. 2018;6:2173.

    Article  Google Scholar 

  160. Akhtar ZR, Tariq K, Mavian C, Ali A, Ullah F, Zang L-S, et al. Trophic transfer and toxicity of heavy metals from dengue mosquito Aedes aegypti to predator dragonfly Tramea cophysa. Ecotoxicology. 2021;30:1108–15.

    Article  CAS  PubMed  Google Scholar 

  161. Geffard A, Geffard O, Amiard JC, His E, Amiard-Triquet C. Bioaccumulation of metals in sediment elutriates and their effects on growth, condition index, and metallothionein contents in oyster larvae. Arch Environ Contam Toxicol. 2007;53:57–65.

    Article  CAS  PubMed  Google Scholar 

  162. Kinuthia GK, Ngure V, Kamau L. Urban mosquitoes and filamentous green algae: their biomonitoring role in heavy metal pollution in open drainage channels in Nairobi industrial area, Kenya. BMC Ecol Evol. 2021;21:188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Maya-Maldonado K, Cardoso-Jaime V, González-Olvera G, Osorio B, Recio-Tótoro B, Manrique-Saide P, et al. Mosquito metallomics reveal copper and iron as critical factors for Plasmodium infection. PLoS Negl Trop Dis. 2021;15:e0009509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Oliver SV, Brooke BD. The effect of metal pollution on the life history and insecticide resistance phenotype of the major malaria vector Anopheles arabiensis (Diptera: Culicidae). PloS One. 2018;13:e0192551.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Callén MS, López JM, Iturmendi A, Mastral AM. Nature and sources of particle associated polycyclic aromatic hydrocarbons (PAH) in the atmospheric environment of an urban area. Environ Pollut. 2013;183:166–74.

    Article  PubMed  Google Scholar 

  166. Wang C, Zhou S, Wu S, Song J, Shi Y, Li B, et al. Surface water polycyclic aromatic hydrocarbons (PAH) in urban areas of Nanjing, China. Water Sci Technol. 2017;76:2150–7.

    Article  CAS  PubMed  Google Scholar 

  167. Douben PET, editor. PAHs: an ecotoxicological perspective. Chichester, UK: John Wiley & Sons, Ltd; 2003. https://doi.org/10.1002/0470867132.

    Book  Google Scholar 

  168. Honda M, Suzuki N. Toxicities of polycyclic aromatic hydrocarbons for aquatic animals. IJERPH. 2020;17:1363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ramkumar G, Muthusamy R, Narayanan M, Dhanapal R, Karthik C, Shivakumar MS, et al. Pretreatment of mosquito larvae with ultraviolet-B and nitropolycyclic aromatic hydrocarbons induces increased sensitivity to permethrin toxicity. Heliyon. 2022;8:e11094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Owens ACS, Cochard P, Durrant J, Farnworth B, Perkin EK, Seymoure B. Light pollution is a driver of insect declines. Biol Conserv. 2020;241:108259.

    Article  Google Scholar 

  171. Rund SSC, Labb LF, Benefiel OM, Duffield GE. Artificial light at night increases Aedes aegypti mosquito biting behavior with implications for arboviral disease transmission. Am J Trop Med Hyg. 2020;103:2450–2.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Sheppard AD, Rund SSC, George GF, Clark E, Acri DJ, Duffield GE. Light manipulation of mosquito behaviour: acute and sustained photic suppression of biting activity in the Anopheles gambiae malaria mosquito. Parasit Vectors. 2017;10:255.

    Article  PubMed  PubMed Central  Google Scholar 

  173. Fyie LR, Gardiner MM, Meuti ME. Artificial light at night alters the seasonal responses of biting mosquitoes. J Insect Physiol. 2021;129:104194.

    Article  CAS  PubMed  Google Scholar 

  174. Kernbach ME, Newhouse DJ, Miller JM, Hall RJ, Gibbons J, Oberstaller J, et al. Light pollution increases West Nile virus competence of a ubiquitous passerine reservoir species. Proc R Soc B. 2019;286:20191051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kernbach ME, Martin LB, Unnasch TR, Hall RJ, Jiang RHY, Francis CD. Light pollution affects West Nile virus exposure risk across Florida. Proc R Soc B. 2021;288

  176. Coetzee BWT, Gaston KJ, Koekemoer LL, Kruger T, Riddin MA, Smit IPJ. Artificial light as a modulator of mosquito-borne disease risk. Front Ecol Evol. 2022;9:768090.

    Article  Google Scholar 

  177. Antonelli P, Duval P, Luis P, Minard G, Valiente MC. Reciprocal interactions between anthropogenic stressors and insect microbiota. Environ Sci Pollut Res. 2022;29:64469–88.

    Article  Google Scholar 

Download references

Acknowledgements

PD was financed by Ecole Urbaine de Lyon. Funding for this project was supported by the French National program EC2CO (Ecosphère Continentale et Côtière) and by the Agence Nationale de la Recherche (SERIOUS project). This project has also received financial support from the CNRS through the MITI interdisciplinary programs and its exploratory research program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Valiente Moro.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duval, P., Antonelli, P., Aschan-Leygonie, C. et al. Impact of Human Activities on Disease-Spreading Mosquitoes in Urban Areas. J Urban Health 100, 591–611 (2023). https://doi.org/10.1007/s11524-023-00732-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11524-023-00732-z

Keywords

Navigation