Skip to main content
Log in

A novel system enhancing the endosomal escapes of peptides promotes Bak BH3 peptide inducing apoptosis in lung cancer A549 cells

  • Original Research
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Therapeutic peptides have been proven useful for treating various diseases. However, it is difficult for therapeutic peptides to reach their target sites with an effective concentration due to inefficient intracellular delivery. Although Tat transduction peptide is a promising tool to deliver therapeutic peptides into cells, the entrapment within endosomes and the nuclear localization of Tat transduction peptide severely limited the biological effects of Tat-linked cargos. In this study, we designed a novel peptide delivering system, Tat–INF7–ubiquitin (TIU), which consisted of Tat transduction peptide, endosomal escape enhancer peptide INF7, and ubiquitin protein. We found that the TIU system was able to efficiently deliver the mCherry fluorescent proteins and the apoptosis-inducing Bak BH3 peptide into the cytosol. The Bak BH3 peptide transported into the cells by the TIU system increased the apoptotic rate to 46.15 ± 4.86 % (p < 0.001) in A549 cells, while Tat-BH3 could result in only 20.45 ± 2.89 %. These results demonstrated that the TIU system could enhance the effects of therapeutic peptides by facilitating the transmembrane delivery of peptides into the cells and the escape of target proteins from the endosome efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Talmadge JE (1998) Pharmacodynamic aspects of peptide administration biological response modifiers. Adv Drug Deliv Rev 33(3):241–252

    Article  CAS  PubMed  Google Scholar 

  2. Vives E, Brodin P, Lebleu B (1997) A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272(25):16010–16017

    Article  CAS  PubMed  Google Scholar 

  3. Chauhan A, Tikoo A, Kapur AK, Singh M (2007) The taming of the cell penetrating domain of the HIV Tat: myths and realities. J Control Release 117(2):148–162. doi:10.1016/j.jconrel.2006.10.031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Poillot C, De Waard M (2011) Potential of cell penetrating peptides for cell drug delivery. Med Sci (Paris) 27(5):527–534. doi:10.1051/medsci/2011275019

    Article  Google Scholar 

  5. Zonin E, Moscatiello R, Miuzzo M, Cavallarin N, Di Paolo ML, Sandona D, Marin O, Brini M, Negro A, Navazio L (2011) TAT-mediated aequorin transduction: an alternative approach for effective calcium measurements in plant cells. Plant Cell Physiol 52(12):2225–2235. doi:10.1093/pcp/pcr145

    Article  CAS  PubMed  Google Scholar 

  6. Nagahara H, Vocero-Akbani AM, Snyder EL, Ho A, Latham DG, Lissy NA, Becker-Hapak M, Ezhevsky SA, Dowdy SF (1998) Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat Med 4(12):1449–1452. doi:10.1038/4042

    Article  CAS  PubMed  Google Scholar 

  7. Zhang YM, Liu CB, Liu N, Ferro Flores G, He J, Rusckowski M, Hnatowich DJ (2003) Electrostatic binding with tat and other cationic peptides increases cell accumulation of 99mTc-antisense DNAs without entrapment. Mol Imaging Biol: MIB: Off Publ Acad Mol Imaging 5(4):240–247

    Article  Google Scholar 

  8. Varkouhi AK, Scholte M, Storm G, Haisma HJ (2011) Endosomal escape pathways for delivery of biologicals. J Control Release 151(3):220–228. doi:10.1016/j.jconrel.2010.11.004

    Article  CAS  PubMed  Google Scholar 

  9. Wadia JS, Stan RV, Dowdy SF (2004) Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med 10(3):310–315. doi:10.1038/nm996

    Article  CAS  PubMed  Google Scholar 

  10. Gump JM, Dowdy SF (2007) TAT transduction: the molecular mechanism and therapeutic prospects. Trends Mol Med 13(10):443–448. doi:10.1016/j.molmed.2007.08.002

    Article  CAS  PubMed  Google Scholar 

  11. El-Sayed A, Futaki S, Harashima H (2009) Delivery of macromolecules using arginine-rich cell-penetrating peptides: ways to overcome endosomal entrapment. AAPS J 11(1):13–22. doi:10.1208/s12248-008-9071-2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Cho YW, Kim JD, Park K (2003) Polycation gene delivery systems: escape from endosomes to cytosol. J Pharm Pharmacol 55(6):721–734. doi:10.1211/002235703765951311

    Article  CAS  PubMed  Google Scholar 

  13. Bullough PA, Hughson FM, Skehel JJ, Wiley DC (1994) Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371(6492):37–43. doi:10.1038/371037a0

    Article  CAS  PubMed  Google Scholar 

  14. Maeda T, Kawasaki K, Ohnishi S (1981) Interaction of influenza virus hemagglutinin with target membrane lipids is a key step in virus-induced hemolysis and fusion at pH 5.2. Proc Natl Acad Sci U S A 78(7):4133–4137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Plank C, Oberhauser B, Mechtler K, Koch C, Wagner E (1994) The influence of endosome-disruptive peptides on gene transfer using synthetic virus-like gene transfer systems. J Biol Chem 269(17):12918–12924

    CAS  PubMed  Google Scholar 

  16. Fretz MM, Mastrobattista E, Koning GA, Jiskoot W, Storm G (2005) Strategies for cytosolic delivery of liposomal macromolecules. Int J Pharm 298(2):305–309. doi:10.1016/j.ijpharm.2005.02.040

    Article  CAS  PubMed  Google Scholar 

  17. Jiang X, Lok MC, Hennink WE (2007) Degradable-brushed pHEMA-pDMAEMA synthesized via ATRP and click chemistry for gene delivery. Bioconjug Chem 18(6):2077–2084. doi:10.1021/bc0701186

    Article  CAS  PubMed  Google Scholar 

  18. Bachmair A, Finley D, Varshavsky A (1986) In vivo half-life of a protein is a function of its amino-terminal residue. Science 234(4773):179–186

    Article  CAS  PubMed  Google Scholar 

  19. Cosulich SC, Worrall V, Hedge PJ, Green S, Clarke PR (1997) Regulation of apoptosis by BH3 domains in a cell-free system. Curr Biol 7(12):913–920

    Article  CAS  PubMed  Google Scholar 

  20. Holinger EP, Chittenden T, Lutz RJ (1999) Bak BH3 peptides antagonize Bcl-xL function and induce apoptosis through cytochrome c-independent activation of caspases. J Biol Chem 274(19):13298–13304

    Article  CAS  PubMed  Google Scholar 

  21. Shangary S, Oliver CL, Tillman TS, Cascio M, Johnson DE (2004) Sequence and helicity requirements for the proapoptotic activity of Bax BH3 peptides. Mol Cancer Ther 3(11):1343–1354

    CAS  PubMed  Google Scholar 

  22. Loison F, Nizard P, Sourisseau T, Le Goff P, Debure L, Le Drean Y, Michel D (2005) A ubiquitin-based assay for the cytosolic uptake of protein transduction domains. Mol Ther 11(2):205–214. doi:10.1016/j.ymthe.2004.10.010

    Article  CAS  PubMed  Google Scholar 

  23. Mann DA, Frankel AD (1991) Endocytosis and targeting of exogenous HIV-1 Tat protein. EMBO J 10(7):1733–1739

    CAS  PubMed Central  PubMed  Google Scholar 

  24. El-Sayed A, Masuda T, Khalil I, Akita H, Harashima H (2009) Enhanced gene expression by a novel stearylated INF7 peptide derivative through fusion independent endosomal escape. J Control Release 138(2):160–167. doi:10.1016/j.jconrel.2009.05.018

    Article  CAS  PubMed  Google Scholar 

  25. Esbjorner EK, Oglecka K, Lincoln P, Graslund A, Norden B (2007) Membrane binding of pH-sensitive influenza fusion peptides. Positioning, configuration, and induced leakage in a lipid vesicle model. Biochemistry 46(47):13490–13504. doi:10.1021/bi701075y

    Article  PubMed  Google Scholar 

  26. Moore NM, Sheppard CL, Barbour TR, Sakiyama-Elbert SE (2008) The effect of endosomal escape peptides on in vitro gene delivery of polyethylene glycol-based vehicles. J Gene Med 10(10):1134–1149. doi:10.1002/jgm.1234

    Article  CAS  PubMed  Google Scholar 

  27. Borodovsky A, Kessler BM, Casagrande R, Overkleeft HS, Wilkinson KD, Ploegh HL (2001) A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14. EMBO J 20(18):5187–5196. doi:10.1093/emboj/20.18.5187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Key grant cultivating the project and interdiscipline of the Chinese Education Ministry, partially supported by the Open Funding Project of the State Key Laboratory of Bioreactor Engineering and the National Natural Science Foundation (30873190) and the National Science Research Project “Significant New Drugs Created” of Eleventh Five-Year Plan (2009ZX09103-693).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingyuan Ma.

Additional information

Nanjing Lin and Wenyun Zheng contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, N., Zheng, W., Li, L. et al. A novel system enhancing the endosomal escapes of peptides promotes Bak BH3 peptide inducing apoptosis in lung cancer A549 cells. Targ Oncol 9, 163–170 (2014). https://doi.org/10.1007/s11523-013-0282-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-013-0282-9

Keywords

Navigation