Skip to main content
Log in

The role of positron emission tomography in staging of non-small cell lung cancer

  • Review
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Correct staging of non-small cell lung cancer (NSCLC) is vital to undertake appropriate management and improve prognosis. Initial staging is usually performed with computerized tomography (CT), which has well recognized limitations, and increasingly functional imaging using integrated positron emission tomography and CT (PET/CT) is being used to provide more accurate staging, to guide biopsies, to assess response to therapy, and to identify recurrent disease. Staging and response to therapy will be discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ferley J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P (2007) Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 18(3):581–592

    Article  Google Scholar 

  2. Cerfolio RJ, Ohja B, Bryant AS, Raghuveer V, Mountz JM, Bartolucci AA (2004) The accuracy of integrated PET–CT compared with dedicated PET alone for the staging of patients with non-small cell lung cancer. Ann Thorac Surg 78(3):1017–1123 discussion 1017-1023

    Article  PubMed  Google Scholar 

  3. van Baardwijk A, Dooms C, van Suylen RJ et al (2007) The maximum uptake of (18) F-deoxyglucose on positron emission tomography scan correlates with survival, hypoxia inducible factor-1alpha and GLUT-1 in non-small cell lung cancer. Eur J Cancer 43(9):1392–1398

    Article  PubMed  CAS  Google Scholar 

  4. Greene FL et al (eds) (2002) AJCC Cancer Staging Handbook. 6th edition. Springer, New York p 191–203

  5. Shepherd FA, Crowley J, Van Houtte P et al (2007) The International Association for the Study of Lung Cancer Lung Cancer Staging Project: proposals regarding the clinical staging of small cell lung cancer in the forthcoming (seventh) edition of the tumor, node, metastasis classification for lung cancer. J Thorac Oncol 2(12):1067–1077

    Article  PubMed  Google Scholar 

  6. Goldstraw P, Crowley J, Chansky K et al (2007) The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours. J Thorac Oncol 2(8):706–714

    Article  PubMed  Google Scholar 

  7. Yang SN, Liang JA, Lin FJ, Kwan AS, Kao CH, Shen YY (2001) Differentiating benign and malignant pulmonary lesions with FDG-PET. Anticancer Res 21:4153–4157

    PubMed  CAS  Google Scholar 

  8. Hashimoto Y, Tsujikawa T, Kondo C et al (2006) Accuracy of PET for diagnosis of solid pulmonary lesions with 18F-FDG uptake below the standardized uptake value of 2.5. J Nucl Med 47(3):426–431

    PubMed  Google Scholar 

  9. Marom EM, Sarvis S, Herndon JE 2nd, Patz EF Jr (2002) T1 lung cancers: sensitivity of diagnosis with fluorodeoxyglucose PET. Radiology 223:453–459

    Article  PubMed  Google Scholar 

  10. Cheran SK, Nielsen ND, Patz EF Jr (2004) False-negative findings for primary lung tumors on FDG positron emission tomography: staging and prognostic implications. AJR Am J Roentgenol 182(5):1129–1132

    PubMed  Google Scholar 

  11. Nomori H, Watanabe K, Ohtsuka T, Naruke T, Suemasu K, Uno K (2004) Evaluation of F-18 fluorodeoxyglucose (FDG) PET scanning for pulmonary nodules less than 3 cm in diameter, with special reference to the CT images. Lung Cancer 45(1):19–27

    Article  PubMed  Google Scholar 

  12. Nawa T, Nakagawa T, Kusano S, Kawasaki Y, Sugawara Y, Nakata H (2002) Lung cancer screening using low-dose spiral CT: results of baseline and 1-year follow-up studies. Chest 122:15–22

    Article  PubMed  Google Scholar 

  13. Ratto GB, Piacenza G, Frola C et al (1991) Chest wall involvement by lung cancer: computed tomographic detection and results of operation. Ann Thorac Surg 51:182–188

    PubMed  CAS  Google Scholar 

  14. Webb WR, Glatsonis C, Zerhouni EA et al (1991) CT and MR imaging in staging non-small cell bronchogenic carcinoma: report of the Radiologic Diagnostic Oncology Group. Radiology 178:705–713

    PubMed  CAS  Google Scholar 

  15. Glazer HS, Duncan-Meyer J, Aronberg DJ, Moran JF, Levitt RG, Sagel SS (1985) Pleural and chest wall invasion in bronchogenic carcinoma: CT evaluation. Radiology 157:191–194

    PubMed  CAS  Google Scholar 

  16. Padovani B, Mouroux J, Seksik L et al (1993) Chest wall invasion by bronchogenic carcinoma: evaluation with MR imaging. Radiology 187:33–38

    PubMed  CAS  Google Scholar 

  17. Herman SJ, Winton TL, Weisbrod GL, Towers MJ, Mentzer SJ (1994) Mediastinal invasion by bronchogenic carcinoma: CT signs. Radiology 190:841–846

    PubMed  CAS  Google Scholar 

  18. Schaffler GI, Wolf G, Schoelnast H et al (2004) Non-small cell lung cancer: evaluation of pleural abnormalities on CT scans with 18F FDG PET. Radiology 231(3):858–865

    Article  PubMed  Google Scholar 

  19. van Baardwijk A, Baumert BG, Bosmans G et al (2006) The current status of FDG-PET in tumour volume definition in radiotherapy treatment planning. Cancer Treat Rev 32(4):245–260

    Article  PubMed  Google Scholar 

  20. Bradley J, Thorstad WL, Mutic S et al (2004) Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 59(1):78–86

    PubMed  Google Scholar 

  21. Shim SS, Lee KS, Kim BT (2005) Non-small cell lung cancer: prospective comparison of integrated FDG PET/CT and CT alone for preoperative staging. Radiology 236(3):1011–1019

    Article  PubMed  Google Scholar 

  22. Mountain CF, Dresler CM (1997) Regional lymph node classification for lung cancer staging. Chest 111:1718–1723

    Article  PubMed  CAS  Google Scholar 

  23. McLoud TC, Bourgouin PM, Greenberg RW et al (1992) Bronchogenic carcinoma: analysis of staging in the mediastinum with CT by correlative lymph node mapping and sampling. Radiology 182:319–323

    PubMed  CAS  Google Scholar 

  24. Arita T, Matsumoto T, Kuramitsu T et al (1996) Is it possible to differentiate malignant mediastinal nodes from benign nodes by size? Reevaluation by CT, tranesophageal echocardiography and nodal specimen. Chest. 110:1004–10081

    Article  PubMed  CAS  Google Scholar 

  25. Dales RE, Stark RM, Raman S (1990) Computed tomography to stage lung cancers: approaching a controversy using meta-analysis. Am Rev Respir Dis 141:1096–1101

    PubMed  CAS  Google Scholar 

  26. Martini N, Heelan R, Westcott J et al (1989) Comparative merits of conventional, computed tomographic, and magnetic resonance imaging in assessing mediastinal involvement in surgically confirmed lung carcinomas. J Thorac Cardiovasc Surg 90:639–648

    Google Scholar 

  27. Georgian D, Rice TW, Mehta AC, Wiedemann HP, Stoller JK, O'Donovan PB (1990) Intrathoracic lymph node evaluation by CT and MRI with histopathologic correlation in non-small cell bronchogenic carcinoma. Clin Imaging 4:35–40

    Article  Google Scholar 

  28. de Langen AJ, Raijmakers P, Riphagen I, Paul MA, Hoekstra OS (2006) The size of mediastinal lymph nodes and its relation with metastatic involvement: a meta-analysis. Eur J Cardiothorac Surg. 29(1):26–9 Jan

    Article  PubMed  Google Scholar 

  29. Birim O, Kappetein AP, Stijnen T, Bogers AJ (2005) Meta-analysis of positron emission tomographic and computed tomographic imaging in detecting mediastinal lymph node metastases in non small cell lung cancer. Ann Thorac Surg 79(1):375–382

    Article  PubMed  Google Scholar 

  30. Gould MK, Sanders GD, Barnett PG et al (2003) Cost-effectiveness of alternative management strategies for patients with solitary pulmonary nodules. Ann Intern Med 138(9):724–735

    PubMed  Google Scholar 

  31. Bryant AS, Cerfolio RJ, Klemm JM, Ohja B (2006) Maximum standard uptake value of mediastinal lymph nodes on integrated FDG-PET–CT predicts pathology in patients with non-small cell lung cancer. Ann Thorac Surg 82(2):417–422

    Article  PubMed  Google Scholar 

  32. Gupta NC, Graeber GM, Bishop HA (2000) Comparative efficacy of positron emission tomography with flurodeoxyglucose in evaluation of small (<1 cm), intermediate (1–3 cm), and large (>3 cm) lymph node lesions. Chest 117:773–778

    Article  PubMed  CAS  Google Scholar 

  33. Ebihara A, Nomori H, Watanabe K et al (2006) Characteristics of advantages of positron emission tomography over computed tomography for N-staging in lung cancer patients. J Clin Oncol 36(11):694–698

    Google Scholar 

  34. Cerfolio RJ, Ohja B, Bryant AS, Bass CS, Bartolucci AA, Mountz JM (2003) The role of FDG-PET scan in staging patients with non small cell carcinoma. Ann Thorac Surg 76(3):861–866

    Article  PubMed  Google Scholar 

  35. Bryant AS, Cerfolio RJ (2006) The clinical stage of non-small cell lung cancer as assessed by means of fluorodeoxyglucose-positron emission tomographic/computed tomographic scanning is less accurate in cigarette smokers. J Thorac Cardiovasc Surg 132:1363–1368

    Article  PubMed  Google Scholar 

  36. Gupta NC, Tamim WJ, Graeber GM, Bishop HA, Hobbs GR (2001) Mediastinal lymph node sampling following positron emission tomography with fluorodeoxyglucose imaging in lung cancer staging. Chest 120(2):521–527

    Article  PubMed  CAS  Google Scholar 

  37. Takamochi K, Yoshida J, Murakami K et al (2005) Pitfalls in lymph node staging with positron emission tomography in non-small cell lung cancer patients. Lung Cancer 47(2):235–242

    Article  PubMed  Google Scholar 

  38. Turkmen C, Sonmezoglu K, Toker A et al (2007) The additional value of FDG PET imaging for distinguishing N0 or N1 from N2 stage in preoperative staging of non-small cell lung cancer in region where the prevalence of inflammatory lung disease is high. Clin Nucl Med 32(8):607–612

    Article  PubMed  Google Scholar 

  39. Yen RF, Chen KC, Lee JM et al (2008) 18F-FDG PET for the lymph node staging of non-small cell lung cancer in a tuberculosis-endemic country: is dual time point imaging worth the effort? Eur J Nucl Med Mol Imaging. doi:10.1007/s00259-008-0733-1

  40. Melek H, Gunluoglu MZ, Demir A, Akin H, Olcmen A, Dincer SI (2008) Role of positron emission tomography in mediastinal lymphatic staging of non-small cell lung cancer. Eur J Cardiothorac Surg 33(2):294–299

    Article  PubMed  Google Scholar 

  41. Yang W, Fu Z, Yu J (2008) Value of PET/CT versus enhanced CT for locoregional lymph nodes in non-small cell lung cancer. Lung Cancer. doi:10.1016/j.lungcan.2007.11.007

  42. de Wever W, Ceyssens S, Mortelmans L et al (2007) Additional value of PET–CT in the staging of lung cancer: comparison with CT alone, PET alone and visual correlation of PET and CT. Eur Radiol 17(1):23–32

    Article  PubMed  Google Scholar 

  43. Cerfolio RJ, Bryant AS (2007) The role of integrated positron emission tomography–computerized tomography in evaluating and staging patients with non-small cell lung cancer. Semin Thorac Cardiovasc Surg 19(3):192–200

    Article  PubMed  Google Scholar 

  44. Shiraki N, Hara M, Ogino H et al (2004) False-positive and true-negative hilar and mediastinal lymph nodes on FDG-PET—radiological–pathological correlation. Ann Nucl Med 18(1):23–28

    Article  PubMed  Google Scholar 

  45. Lee PC, Port JL, Korst RJ, Liss Y, Meherally DN, Altorki NK (2007) Risk factors for occult mediastinal metastases in clinical stage I non-small cell lung cancer. Ann Thorac Surg 84(1):177–181

    Article  PubMed  Google Scholar 

  46. Meyers BF, Haddad F, Siegel BA et al (2006) Cost-effectiveness of routine mediastinoscopy in computed tomography- and positron emission tomography-screened patients with stage I lung cancer. J Thorac Cardiovasc Surg 131(4):822–829

    Article  PubMed  Google Scholar 

  47. Cerfolio RJ, Bryant AS, Eloubeidi MA (2006) Routine mediastinoscopy and esophageal ultrasound fine-needle aspiration in patients with non-small cell lung cancer who are clinically N2 negative: a prospective study. Chest 130(6):1791–1795

    Article  PubMed  Google Scholar 

  48. Bauwens O, Dusart M, Pierard P et al (2008) Endobronchial ultrasound and value of PET for prediction of pathological results of mediastinal hot spots in lung cancer patients. Lung Cancer. doi:10.1016/j.lungcan.2008.01.005

  49. Eloubeidi MA, Tamhane A, Chen VK, Cerfolio RJ (2005) Endoscopic ultrasound-guided fine-needle aspiration in patients with non-small cell lung cancer and prior negative mediastinoscopy. Ann Thorac Surg 80(4):1231–1239

    Article  PubMed  Google Scholar 

  50. Eloubeidi MA, Cerfolio RJ, Chen VK, Desmond R, Syed S, Ohja B (2005) Endoscopic ultrasound-guided fine needle aspiration of mediastinal lymph node in patients with suspected lung cancer after positron emission tomography and computed tomography scans. Ann Thorac Surg 79(1):263–268

    Article  PubMed  Google Scholar 

  51. Yasufuku K, Nakajima T, Motoori K et al (2006) Comparison of endobronchial ultrasound, positron emission tomography, and CT for lymph node staging of lung cancer. Chest 130(3):710–718

    Article  PubMed  Google Scholar 

  52. Lee JD, Ginsberg RJ (1996) Lung cancer staging: the value of ipsilateral scalene lymph node biopsy performed at mediastinoscopy. Ann Thorac Surg 62:338–341

    Article  PubMed  CAS  Google Scholar 

  53. Quint LE, Tummala S, Brisson LJ et al (1996) Distribution of distant metastases from newly diagnosed non-small cell lung cancer. Ann Thorac Surg 62:246–250

    Article  PubMed  CAS  Google Scholar 

  54. Vesselle H, Pugsley JM, Vallieres E, Wood DE (2002) The impact of fluorodeoxyglucose F 18 positron-emission tomography on the surgical staging of non-small cell lung cancer. J Thorac Cardiovasc Surg 124:511–519

    Article  PubMed  Google Scholar 

  55. de Wever W, Vankan Y, Stroobants S, Versdchakelen J (2007) Detection of extrapulmonary lesions with integrated PET/CT in the staging of lung cancer. Eur Respir J 29(5):995–1002

    Article  PubMed  Google Scholar 

  56. Allard P, Yankaskas BC, Fletcher RH, Pargker LA, Halvorsen RA Jr (1990) Sensitivity and specificity of computed tomography for the detection of adrenal metastastatic lesions among 91 autopsied lung cancer patients. Cancer 66:457–462

    Article  PubMed  CAS  Google Scholar 

  57. Blake MA, Slattery JM, Kalra MK et al (2006) Adrenal lesions: characterization with fused PET/CT image in patients with proved or suspected malignancy—initial experience. Radiology 238(3):970–977

    Article  PubMed  Google Scholar 

  58. Metser U, Miller E, Lerman H, Lievshitz G, Avital S, Evan-Sapir E (2006) 18F-FDG PET/CT in the evaluation of adrenal masses. J Nucl Med 47(1):32–37

    PubMed  Google Scholar 

  59. Wiering B, Ruers TJ, Krabbe PF, Dekker HM, Oyen WJ (2007) Comparison of multiphase CT, FDG-PET and intra-operative ultrasound in patients with colorectal liver metastases selected for surgery. Ann Surg Oncol 14:818–826

    Article  PubMed  CAS  Google Scholar 

  60. Cheran SK, Herndon JE 2nd, Patz EF Jr (2004) Comparison of whole-body FDG-PET to bone scan for detection of bone metastases in patients with a new diagnosis of lung cancer. Lung Cancer 44(3):317–325

    Article  PubMed  Google Scholar 

  61. Taira AV, Herfkens RJ, Gambhir SS, Quon A (2007) Detection of bone metastases: assessment of integrated FDG PET/CT imaging. Radiology 243(1):204–211

    Article  PubMed  Google Scholar 

  62. Seltzer MA, Yap CS, Silverman DH et al (2002) The impact of PET on the management of lung cancer: the referring physician's perspective. J Nucl Med 43:752–756

    PubMed  Google Scholar 

  63. Kalff V, Hicks RJ, MacManus MP et al (2001) Clinical impact of (18) F fluorodeoxyglucose positron emission tomography in patients with non-small cell lung cancer: a prospective study. J Clin Oncol 19:111–118

    PubMed  CAS  Google Scholar 

  64. Weder W, Schmid RA, Bruchhaus H, Hillinger S von Schulthess GK, Steinert HC (1998) Detection of extrathoracic metastases by positron emission tomography in lung cancer. Ann Thorac Surg 66:886–893

    Article  PubMed  CAS  Google Scholar 

  65. Silvestri GA, Gould MK, Margolis ML et al (2007) Noninvasive staging of non-small cell lung cancer: ACCP evidenced-based clinical practice guidelines (2nd edition). Chest 132(3 Suppl):178S–201S

    Article  PubMed  Google Scholar 

  66. Vansteenkiste J, Fischer BM, Dooms C, Mortensen (2004) Positron-emission tomography in prognostic and therapeutic assessment of lung cancer: systemic review. Lancet Oncol 5:531–540

    Article  PubMed  Google Scholar 

  67. Goodgame B, Pillot GA, Yang Z et al (2008) Prognostic value of preoperative positron emission tomography in resected stage I non-small cell lung cancer. J Thorac Oncol 3:130–134

    Article  PubMed  Google Scholar 

  68. Ohtsuka T, Nomori H, Watanabe K et al (2006) Prognostic significance of [(18)F] fluorodeoxyglucose uptake on positron emission tomography in patients with pathologic stage I lung adenocarcinoma. Cancer 107(10):2468–2473

    Article  PubMed  Google Scholar 

  69. Cerfolio RJ, Bryant AS Ohja B, Bartolucci AA (2005) The maximum standardized uptake values on positron emission tomography of a non-small cell lung cancer predict stage, recurrence, and survival. J Thorac Cardiovasc Surg 130:151–159

    Article  PubMed  Google Scholar 

  70. Downey RJ, Akhurst T, Gonen M et al (2004) Preoperative F-18 fluorodeoxyglucose-positron emission tomography maximal standardized uptake value predicts survival after lung cancer resection. J Clin Oncol 22(16):3255–3260

    Article  PubMed  Google Scholar 

  71. Lorent N, De Leyn P, Lievens Y et al (2004) Long-term survival of surgically staged IIIA-N2 non-small-cell lung cancer treated with surgical combined modality approach: analysis of a 7-year prospective experience. Ann Oncol 15(11):1645–1653

    Article  PubMed  CAS  Google Scholar 

  72. Weber W, Figlin R (2007) Monitoring cancer treatment with PET/CT: does it make a difference? J Nucl Med 48:36S–44S

    Article  PubMed  CAS  Google Scholar 

  73. De Leyn P, Stroobants S, de Wever W et al (2006) Prospective comparative study of integrated positron emission tomography–computed tomography scan compared with remediastinoscopy in the assessment of residual mediastinal lymph node disease after induction chemotherapy for mediastinoscopy-proven stage IIIA-N2 Non-small-cell lung cancer: a Leuven Lung Cancer Group Study. J Clin Oncol 24(21):3333–3339

    Article  PubMed  Google Scholar 

  74. Akhurst T, Downey RJ, Ginsberg MS et al (2002) An initial experience with FDG-PET in the imaging of residual disease after induction therapy for lung cancer. Ann Thorac Surg 73:259–264 discussion 264-266

    Article  PubMed  Google Scholar 

  75. Cerfolio RJ, Bryant AS Ohja B (2006) Restaging patients with N2 (stage IIIa) non-small cell lung cancer after neoadjuvant chemoradiotherapy: a prospective study. J Thorac Cardiovasc Surg 131(6):1229–1235. Erratum in: J Thorac Cardiovasc Surg Sep;132(3):565–567

    Google Scholar 

  76. Eschmann SM, Friedel G, Paulsen F et al (2007) Repeat 18F-FDG PET for monitoring neoadjuvant chemotherapy in patients with stage 111 non-small cell lung cancer. Lung Cancer 55:165–171

    Article  PubMed  CAS  Google Scholar 

  77. Pottgen C, Levegrun S, Theegarten D et al (2006) Value of 18F-fluoro-2-deoxy-d-glucose-positron emission tomography/computed tomography in non-small cell lung cancer for prediction of pathologic response and times to relapse after neoadjuvant chemoradiotherapy. Clin Cancer Res 12:97–106

    Article  PubMed  Google Scholar 

  78. Cerfolio RJ, Bryant AS (2007) When is it best to repeat a 2-fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography scan on patients with non-small cell lung cancer who have received neoadjuvant chemoradiotherapy? Ann Thorac Surg 84(4):1092–1097

    Article  PubMed  Google Scholar 

  79. Eschmann SM, Friedel G, Paulsen F et al (2007) 18F-FDG PET for assessment of therapy response and preoperative re-evaluation after neoadjuvant radio-chemotherapy in stage 111 non-small cell lung cancer. Eur J Nucl Med Mol Imaging 34:463–471

    Article  PubMed  Google Scholar 

  80. Dooms C, Verbeken E, Stroobants S, Nackaerts K, De Leyn P, Vansteenkiste J (2008) Prognostic stratification of stage IIIA-N2 non-small-cell lung cancer after induction chemotherapy: a model based on the combination of morphometric–pathologic response in mediastinal nodes and primary tumor response on serial 18-fluoro-2-deoxy-glucose positron emission tomography. J Clin Oncol 26(7):1128–1134

    Article  PubMed  Google Scholar 

  81. Pantaleo MA, Nannini M, Maleddu A et al (2008) Conventional and novel PET tracers for imaging in oncology in the era of molecular therapy. Cancer Treat Rev 34(2):103–121

    Article  PubMed  CAS  Google Scholar 

  82. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452(7187):580–589

    Article  PubMed  CAS  Google Scholar 

  83. Goshen E, Davidson T, Zwas ST, Aderka D (2006) PET/CT in the evaluation of response to treatment of liver metastases from colorectal cancer with bevacizumab and irinotecan. Technol Cancer Res Treat 5(1):37–43

    PubMed  CAS  Google Scholar 

  84. Lubezky N, Metser U, Geva R et al (2007) The role and limitations of 18-fluoro-2-deoxy-d-glucose positron emission tomography (FDG-PET) scan and computerized tomography (CT) in restaging patients with hepatic colorectal metastases following neoadjuvant chemotherapy: comparison with operative and pathological findings. J Gastrointest Surg 11(4):472–478

    Article  PubMed  Google Scholar 

  85. Cai W, Chen K, He L, Cao Q, Koong A, Chen X (2007) Quantitative PET of EGFR expression in xenograft-bearing mice using 64Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody. Eur J Nucl Med Mol Imaging 34(6):850–858

    Article  PubMed  CAS  Google Scholar 

  86. Cai W, Chen K, Mohamedali KA et al (2006) PET of vascular endothelial growth factor receptor expression. J Nucl Med 47(12):2048–2056

    PubMed  CAS  Google Scholar 

  87. Cai W, Nui G, Chen X (2008) Multimodality imaging of the HER-kinase axis in cancer. Eur J Nucl Med Mol Imaging 35(1):186–208

    Article  PubMed  Google Scholar 

  88. Gagne P, Akalu A, Brooks PC (2004) Challenges facing antiangiogenic therapy for cancer: impact of the tumor extracellular environment. Expert Rev Anticancer Ther 4(1):129–140

    Article  PubMed  Google Scholar 

  89. Beer AJ, Lorenzen S, Metz S et al (2008) Comparison of integrin alphaVbeta3 expression and glucose metabolism in primary and metastatic lesions in cancer patients: a PET study using 18F-galacto-RGD and 18F-FDG. J Nucl Med 49(1):22–29

    Article  PubMed  Google Scholar 

  90. Atkinson DM, Clarke MJ, Mladek AC et al (2008) Using fluorodeoxythymidine to monitor anti-EGFR inhibitor therapy in squamous cell carcinoma xenografts. Head Neck 30(6):790–799

    Article  PubMed  Google Scholar 

  91. Yamamoto Y, Nishiyama Y, Kimura N et al (2008) Comparison of (18)F-FLT PET and (18)F-FDG PET for preoperative staging in non-small cell lung cancer. Eur J Nucl Med 35:236–245

    Article  CAS  Google Scholar 

  92. Yap CS, Czernin J, Fishbein MC et al (2006) Evaluation of thoracic tumors with 18F-fluorothymidine and 18F-fluorodeoxyglucose-positron emission tomography. Chest 129(2):393–401

    Article  PubMed  Google Scholar 

  93. Wynants J, Stroobants S, Dooms C, Vansteenkiste J (2006) Staging of lung cancer. PET Clinics 1:301–316

    Article  Google Scholar 

Download references

Conflict of interest statement

No funds were received in support of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheila C. Rankin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rankin, S.C. The role of positron emission tomography in staging of non-small cell lung cancer. Targ Oncol 3, 149–159 (2008). https://doi.org/10.1007/s11523-008-0085-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-008-0085-6

Keywords

Navigation