Skip to main content

Advertisement

Log in

Computer simulation-based nanothermal field and tissue damage analysis for cardiac tumor ablation

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

A Correction to this article was published on 21 February 2024

This article has been updated

Abstract

Radiofrequency ablation is a nominally invasive technique to eradicate cancerous or non-cancerous cells by heating. However, it is still hampered to acquire a successful cell destruction process due to inappropriate RF intensities that will not entirely obliterate tumorous tissues, causing in treatment failure. In this study, we are acquainted with a nanoassisted RF ablation procedure of cardiac tumor to provide better outcomes for long-term survival rate without any recurrences. A three-dimensional thermo-electric energy model is employed to investigate nanothermal field and ablation efficiency into the left atrium tumor. The cell death model is adopted to quantify the degree of tissue injury while injecting the Fe3O4 nanoparticles concentrations up to 20% into the target tissue. The results reveal that when nanothermal field extents as a function of tissue depth (10 mm) from the electrode tip, the increasing thermal rates were approximately 0.54362%, 3.17039%, and 7.27397% for the particle concentration levels of 7%, 10%, and 15% compared with no-particle case. In the 7% Fe3O4 nanoparticles, 100% fractional damage index is achieved after ablation time of 18 s whereas tissue annihilation approach proceeds longer to complete for no-particle case. The outcomes indicate that injecting nanoparticles may lessen ablation time in surgeries and prevent damage to adjacent healthy tissue.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Change history

Abbreviations

\(\theta\) (°C):

Temperature

t (s):

Time

c (J kg−1 °C−1):

Specific heat

k (W m−1 °C−1):

Thermal conductivity

\({q}_{RF}\) (W m−3):

Volumetric heat source

\({Q}_{m}\) (W m−3):

Metabolic heat source

J (A m−2):

Electric current density

\({J}_{e}\) (A m−2):

External electric current density

E (V m−1):

Electric field intensity

V (V):

Electric potential

(x, y, z):

Cartesian coordinate system

ρ (kg m−3):

Tissue density

ρ b (kg m−3):

Blood density

\({\omega }_{b}({s}^{-1})\) :

Blood perfusion rate

\({\omega }_{b0}({s}^{-1})\) :

Constant blood perfusion of tissue/tumor

\(\alpha (t)\) :

Cumulative tissue damage

\({\Omega }_{d}\) :

Fraction of necrotic tissue

\(\sigma (S\ {m}^{-1})\)  :

Electrical conductivity

\(\eta\) :

Particle volume fractions

b:

Blood

eff:

Effective

max:

Maximum

References

  1. Berjano EJ (2006) Theoretical modeling for radiofrequency ablation: state-of-the-art and challenges for the future. Biomed Eng Online 5:1–17

    Article  Google Scholar 

  2. Singh S, Melnik R (2020) Thermal ablation of biological tissues in disease treatment: a review of computational models and future directions. Electromagn Biol Med 39:49–88

    Article  PubMed  Google Scholar 

  3. Munshi A (2021) Ablative radiosurgery for cardiac arrhythmias–a systematic review. Cancer/Radiothérapie 25:373–379

    Article  CAS  PubMed  Google Scholar 

  4. Luo M, Jiang H, Shi T (2022) Multi-stage puncture path planning algorithm of ablation needles for percutaneous radiofrequency ablation of liver tumors. Comput Biol Med 145:105506

    Article  PubMed  Google Scholar 

  5. Possebon R, Jiang Y, Mulier S, Wang C, Chen F, Feng Y, Ni Y (2018) A piecewise function of resistivity of liver: determining parameters with finite element analysis of radiofrequency ablation. Med Biol Eng Compu 56:385–394

    Article  Google Scholar 

  6. Park MJ, Kim YS, Rhim H, Lim HK, Lee MW, Choi D (2011) A comparison of US-guided percutaneous radiofrequency ablation of medium-sized hepatocellular carcinoma with a cluster electrode or a single electrode with a multiple overlapping ablation technique. J Vasc Interv Radiol 22:771–779

    Article  CAS  PubMed  Google Scholar 

  7. Chen MH, Yang W, Yan K, Gao W, Dai Y, Wang YB, Zhang XP, Yin SS (2005) Treatment efficacy of radiofrequency ablation of 338 patients with hepatic malignant tumor and the relevant complications. World J Gastroenterol 11:6395–6401

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang B, Moser MAJ, Zhang EM, Luo Y, Liu C, Zhang W (2016) A review of radiofrequency ablation: large target tissue necrosis and mathematical modelling. Physica Med 32:961–971

    Article  Google Scholar 

  9. Hossain SMC, Ferdows M, Alam MS, Bangalee MZI, Memon K, Islam MS, Zhao G (2021) Two-phase flow model based bubble packing algorithm for optimization of multiprobe cryosurgery. Int Commun Heat Mass Transfer 127:105515

    Article  Google Scholar 

  10. Zhang X, Hossain SMC, Wang Q, Qiu B, Zhao G (2019) Two-phase flow and heat transfer in a self-developed MRI compatible LN2 cryoprobe and its experimental evaluation. Int J Heat Mass Transf 136:709–718

    Article  CAS  Google Scholar 

  11. Pérez JJ, Nadal E, Berjano E, González-Suárez A (2022) Computer modeling of radiofrequency cardiac ablation including heartbeat-induced electrode displacement. Comput Biol Med 144:105346

    Article  PubMed  Google Scholar 

  12. Zhang X, Chapal Hossain SM, Zhao G, Qiu B, He X (2018) Two-phase heat transfer model for multiprobe cryosurgery. Appl Therm Eng 113(2017):47–57

    Article  Google Scholar 

  13. Hossain SMC, Zhang X, Haider Z, Hu P, Zhao G (2018) Optimization of prostatic cryosurgery with multi-cryoprobe based on refrigerant flow. J Therm Biol 76:58–67

    Article  PubMed  Google Scholar 

  14. Chen Y-C, Tu Y-K, Tsai Y-J, Tsai Y-P, Hsiao C-K (2022) Local thermal effect of power-on setting on monopolar coagulation: a three-dimensional electrothermal coupled finite element study. Med Biol Eng Compu 60:3525–3538

    Article  Google Scholar 

  15. Satish V, Repaka R (2023) Microwave ablation trocar for ablating cancerous tumors: a numerical analysis. Med Biol Eng Compu 61:1113–1131

    Article  Google Scholar 

  16. Tyebally S, Chen D, Bhattacharyya S, Mughrabi A, Hussain Z, Manisty C, Westwood M, Ghosh AK, Guha A (2020) Cardiac Tumors: JACC CardioOncology State-of-the-Art Review. JACC CardioOncol 2:293–311

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bussani R, Castrichini M, Restivo L, Fabris E, Porcari A, Ferro F, Pivetta A, Korcova R, Cappelletto C, Manca P, Nuzzi V, Bessi R, Pagura L, Massa L, Sinagra G (2020) Cardiac tumors: diagnosis, prognosis, and treatment. Curr Cardiol Rep 22:169

    Article  PubMed  PubMed Central  Google Scholar 

  18. Basso C, Rizzo S, Valente M, Thiene G (2016) Cardiac masses and tumours. Heart 102:1230–1245

    Article  CAS  PubMed  Google Scholar 

  19. Zaltieri M, Massaroni C, Cauti FM, Schena E (2021) Techniques for temperature monitoring of myocardial tissue undergoing radiofrequency ablation treatments: an overview. Sensors 21:1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Irastorza RM, d’Avila A, Berjano E (2018) Thermal latency adds to lesion depth after application of high-power short-duration radiofrequency energy: Results of a computer-modeling study. J Cardiovasc Electrophysiol 29:322–327

    Article  PubMed  Google Scholar 

  21. Pérez JJ, D’Avila A, Aryana A, Berjano E (2015) Electrical and thermal effects of esophageal temperature probes on radiofrequency catheter ablation of atrial fibrillation: results from a computational modeling study. J Cardiovasc Electrophysiol 26:556–564

    Article  PubMed  Google Scholar 

  22. Pérez JJ, González-Suárez A, Berjano E (2018) Numerical analysis of thermal impact of intramyocardial capillary blood flow during radiofrequency cardiac ablation. Int J Hyperthermia 34:243–249

    Article  PubMed  Google Scholar 

  23. Ooi EH, Lee KW, Yap S, Khattab MA, Liao IY, Ooi ET, Foo JJ, Nair SR, Mohd Ali AF (2019) The effects of electrical and thermal boundary condition on the simulation of radiofrequency ablation of liver cancer for tumours located near to the liver boundary. Comput Biol Med 106:12–23

    Article  PubMed  Google Scholar 

  24. Shao YL, Arjun B, Leo HL, Chua KJ (2017) A computational theoretical model for radiofrequency ablation of tumor with complex vascularization. Comput Biol Med 89:282–292

    Article  CAS  PubMed  Google Scholar 

  25. A. González-Suárez, J.J. Pérez, R.M. Irastorza, A. D'Avila, E. Berjano (2021) Computer modeling of radiofrequency cardiac ablation: 30 years of bioengineering research. Comput Methods Programs Biomed 106546

  26. Romero-Méndez R, Berjano E (2017) An analytical solution for radiofrequency ablation with a cooled cylindrical electrode. Math Probl Eng 2017:9021616

    Article  Google Scholar 

  27. Tofig BJ, Lukac P, Nielsen JM, Hansen ESS, Tougaard RS, Jensen HK, Nielsen JC, Kristiansen SB (2019) Radiofrequency ablation lesions in low-, intermediate-, and normal-voltage myocardium: an in vivo study in a porcine heart model. Europace 21:1919–1927

    Article  PubMed  Google Scholar 

  28. Yan S, Gu K, Wu X, Wang W (2020) Computer simulation study on the effect of electrode–tissue contact force on thermal lesion size in cardiac radiofrequency ablation. Int J Hyperth 37:37–48

    Article  Google Scholar 

  29. Gu K, Yan S, Wu X (2022) Effect of anisotropy in myocardial electrical conductivity on lesion characteristics during radiofrequency cardiac ablation: a numerical study. Int J Hyperthermia 39:120–133

    Article  CAS  PubMed  Google Scholar 

  30. A Petras, Z Moreno Weidmann, M Echeverria Ferrero, M Leoni, JM Guerra, L Gerardo-Giorda (2022) Impact of the electrode tip shape on catheter performance in cardiac radiofrequency ablation. Heart Rhythm O2

  31. Sánchez-Muñoz EJ, Berjano E, González-Suárez A (2022) Computer simulations of consecutive radiofrequency pulses applied at the same point during cardiac catheter ablation: Implications for lesion size and risk of overheating. Comput Methods Programs Biomed 220:106817

    Article  PubMed  Google Scholar 

  32. Glazer ES, Curley SA (2011) Non-invasive radiofrequency ablation of malignancies mediated by quantum dots, gold nanoparticles and carbon nanotubes. Ther Deliv 2:1325–1330

    Article  CAS  PubMed  Google Scholar 

  33. Shenoi MM, Shah NB, Griffin RJ, Vercellotti GM, Bischof JC (2011) Nanoparticle preconditioning for enhanced thermal therapies in cancer. Nanomedicine 6:545–563

    Article  CAS  PubMed  Google Scholar 

  34. Hossain SMC, Ferdows M, Bangalee MZI, Alam MS (2022) Two-phase bio-nanofluid flow through a bifurcated artery with magnetic field interaction. Int J Thermofluids 15:100194

    Article  CAS  Google Scholar 

  35. Hossain SMC, Zhang X, Liu Z, Haider Z, Memon K, Panhwar F, Mbogba MK, Hu P, Zhao G (2018) Evaluation effect of magnetic field on nanofluid flow through a deformable bifurcated arterial network. Int Commun Heat Mass Transfer 98:239–247

    Article  Google Scholar 

  36. Singh M, Ma R, Zhu L (2021) Theoretical evaluation of enhanced gold nanoparticle delivery to PC3 tumors due to increased hydraulic conductivity or recovered lymphatic function after mild whole body hyperthermia. Med Biol Eng Compu 59:301–313

    Article  Google Scholar 

  37. Moran CH, Wainerdi SM, Cherukuri TK, Kittrell C, Wiley BJ, Nicholas NW, Curley SA, Kanzius JS, Cherukuri P (2009) Size-dependent joule heating of gold nanoparticles using capacitively coupled radiofrequency fields. Nano Res 2:400–405

    Article  CAS  Google Scholar 

  38. Elliott AM, Shetty AM, Wang J, Hazle JD, Stafford RJ (2010) Use of gold nanoshells to constrain and enhance laser thermal therapy of metastatic liver tumours. Int J Hyperthermia 26:434–440

    Article  CAS  PubMed  Google Scholar 

  39. Tamarov KP, Osminkina LA, Zinovyev SV, Maximova KA, Kargina JV, Gongalsky MB, Ryabchikov Y, Al-Kattan A, Sviridov AP, Sentis M, Ivanov AV, Nikiforov VN, Kabashin AV, Timoshenko VY (2014) Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy. Sci Rep 4:7034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. DT Nguyen, WS Tzou, L Zheng, W Barham, JL Schuller, B Shillinglaw, RA Quaife, WH Sauer (2016) Enhanced radiofrequency ablation with magnetically directed metallic nanoparticles. Circ Arrhythm Electrophysiol 9

  41. Alvarez SS, Huerta LFE, Vargas AV, López J, Silva JG, González CA (2016) Characterization of breast cancer radiofrequency ablation assisted with magnetic nanoparticles: in silico and in vitro study. J Electromagn Anal Appl 8:1–7

    Google Scholar 

  42. McWilliams BT, Wang H, Binns VJ, Curto S, Bossmann SH, Prakash P (2017) Experimental investigation of magnetic nanoparticle-enhanced microwave hyperthermia. J Funct Biomater 8:21

    Article  PubMed  PubMed Central  Google Scholar 

  43. García-Jimeno S, Ortega-Palacios R, Cepeda-Rubio MF, Vera A, Leija-Salas L, Estelrich J (2012) Improved thermal ablation efficacy using magnetic nanoparticles: a study in tumor phantoms. Progress Electromagn Res 128:229–248

    Article  Google Scholar 

  44. Tang Y, Flesch RC, Jin T (2017) Numerical investigation of temperature field in magnetic hyperthermia considering mass transfer and diffusion in interstitial tissue. J Phys D Appl Phys 51:035401

    Article  Google Scholar 

  45. Shao YL, Arjun B, Leo HL, Chua KJ (2017) Nano-assisted radiofrequency ablation of clinically extracted irregularly-shaped liver tumors. J Therm Biol 66:101–113

    Article  CAS  PubMed  Google Scholar 

  46. Beyk J, Tavakoli H (2019) Selective radiofrequency ablation of tumor by magnetically targeting of multifunctional iron oxide-gold nanohybrid. J Cancer Res Clin Oncol 145:2199–2209

    Article  CAS  PubMed  Google Scholar 

  47. Yue K, Yu C, Lei Q, Luo Y, Zhang X (2014) Numerical simulation of effect of vessel bifurcation on heat transfer in the magnetic fluid hyperthermia. Appl Therm Eng 69:11–18

    Article  Google Scholar 

  48. Kandala SK, Liapi E, Whitcomb LL, Attaluri A, Ivkov R (2019) Temperature-controlled power modulation compensates for heterogeneous nanoparticle distributions: a computational optimization analysis for magnetic hyperthermia. Int J Hyperthermia 36:115–129

    Article  CAS  PubMed  Google Scholar 

  49. Sadeghi-Goughari M, Jeon S, Kwon H-J (2020) Magnetic nanoparticles-enhanced focused ultrasound heating: size effect, mechanism, and performance analysis. Nanotechnology 31:245101

    Article  CAS  PubMed  Google Scholar 

  50. Cheong JKK, Popov V, Alchera E, Locatelli I, Alfano M, Menichetti L, Armanetti P, Maturi M, Franchini MC, Ooi EH, Chiew YS (2021) A numerical study to investigate the effects of tumour position on the treatment of bladder cancer in mice using gold nanorods assisted photothermal ablation. Comput Biol Med 138:104881

    Article  CAS  PubMed  Google Scholar 

  51. Pefanis G, Maniotis N, Tsiapla A-R, Makridis A, Samaras T, Angelakeris M (2022) Numerical simulation of temperature variations during the application of safety protocols in magnetic particle hyperthermia. Nanomaterials 12:554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Manthe RL, Foy SP, Krishnamurthy N, Sharma B, Labhasetwar V (2010) Tumor Ablation and nanotechnology. Mol Pharm 7:1880–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen D, Tang Q, Li X, Zhou X, Zang J, Xue WQ, Xiang JY, Guo CQ (2012) Biocompatibility of magnetic Fe3O4 nanoparticles and their cytotoxic effect on MCF-7 cells. Int J Nanomedicine 7:4973–4982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Y Stasiuk, V Maksymenko, M Sychyk (2020) Mathematical modeling of radiofrequency ablation during open-heart surgery. Arch Electr Eng 423–431–423–431

  55. González-Suárez A, Trujillo M, Burdío F, Andaluz A, Berjano E (2014) Could the heat sink effect of blood flow inside large vessels protect the vessel wall from thermal damage during RF-assisted surgical resection? Med Phys 41:083301

    Article  PubMed  Google Scholar 

  56. Zorbas G, Samaras T (2014) Simulation of radiofrequency ablation in real human anatomy. Int J Hyperth 30:570–578

    Article  Google Scholar 

  57. Consiglieri L (2013) An analytical solution for a bio-heat transfer problem. Int J Bio-Sci Bio-Technol 5:267–278

    Google Scholar 

  58. Huang HW (2013) Influence of blood vessel on the thermal lesion formation during radiofrequency ablation for liver tumors. Med Phys 40:073303

    Article  PubMed  Google Scholar 

  59. Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1:93–122

    Article  CAS  PubMed  Google Scholar 

  60. Trujillo M, Berjano E (2013) Review of the mathematical functions used to model the temperature dependence of electrical and thermal conductivities of biological tissue in radiofrequency ablation. Int J Hyperth 29:590–597

    Article  Google Scholar 

  61. Shao YL, Leo HL, Chua KJ (2018) Studying of the thermal performance of a hybrid cryo-RFA treatment of a solid tumor. Int J Heat Mass Transf 122:410–420

    Article  Google Scholar 

  62. Ooi EH, Ooi ET (2021) Unidirectional ablation minimizes unwanted thermal damage and promotes better thermal ablation efficacy in time-based switching bipolar radiofrequency ablation. Comput Biol Med 137:104832

    Article  CAS  PubMed  Google Scholar 

  63. Barnoon P, Ashkiyan M (2020) Magnetic field generation due to the microwaves by an antenna connected to a power supply to destroy damaged tissue in the liver considering heat control. J Magn Magn Mater 513:167245

    Article  CAS  Google Scholar 

  64. Barnoon P, Bakhshandehfard F (2021) Thermal management in a biological tissue in order to destroy tissue under local heating process. Case Stud Therm Eng 26:101105

    Article  Google Scholar 

  65. Singh S, Melnik R (2020) Domain heterogeneity in radiofrequency therapies for pain relief: a computational study with coupled models. Bioengineering 7:35

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wang Z, Zhao G, Wang T, Yu Q, Su M, He X (2015) Three-dimensional numerical simulation of the effects of fractal vascular trees on tissue temperature and intracelluar ice formation during combined cancer therapy of cryosurgery and hyperthermia. Appl Therm Eng 90:296–304

    Article  CAS  Google Scholar 

  67. Pérez JJ, González-Suárez A, Nadal E, Berjano E (2020) Thermal impact of replacing constant voltage by low-frequency sine wave voltage in RF ablation computer modeling. Comput Methods Programs Biomed 195:105673

    Article  PubMed  Google Scholar 

  68. Yan S, Wu X, Wang W (2016) A simulation study to compare the phase-shift angle radiofrequency ablation mode with bipolar and unipolar modes in creating linear lesions for atrial fibrillation ablation. Int J Hyperthermia 32:231–238

    Article  PubMed  Google Scholar 

  69. González-Suárez A, Trujillo M, Koruth J, d’Avila A, Berjano E (2014) Radiofrequency cardiac ablation with catheters placed on opposing sides of the ventricular wall: computer modelling comparing bipolar and unipolar modes. Int J Hyperthermia 30:372–384

    Article  PubMed  Google Scholar 

  70. Zhang X, Zheng L, Suleiman K, Shu C (2021) Combined cryosurgery and cold-responsive drug-loaded nanoparticles to enhance deep-lying tumor therapy: a mathematical model. Int J Heat Mass Transf 165:120663

    Article  CAS  Google Scholar 

  71. Patankar S (2018) Numerical heat transfer and fluid flow. Taylor & Francis. https://doi.org/10.1201/9781482234213

  72. Amestoy PR, Duff IS, L’Excellent JY (2000) Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput Methods Appl Mech Eng 184:501–520

    Article  Google Scholar 

  73. Amritkar A, de Sturler E, Świrydowicz K, Tafti D, Ahuja K (2015) Recycling Krylov subspaces for CFD applications and a new hybrid recycling solver. J Comput Phys 303:222–237

    Article  Google Scholar 

  74. Knavel EM, Brace CL (2013) Tumor ablation: common modalities and general practices. Tech Vasc Interv Radiol 16:192–200

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was partially supported by the Ministry of Science and Technology, Government of the People’s Republic of Bangladesh, and the Centennial Research Grant, University of Dhaka, Dhaka, Bangladesh.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. M. C. Hossain or G. Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The text "0.17em" has been removed in equations 1, 3, 6, 7, 8, 10, 11, 13, 14.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, S.M.C., Zakaria, J.B., Ferdows, M. et al. Computer simulation-based nanothermal field and tissue damage analysis for cardiac tumor ablation. Med Biol Eng Comput 62, 1549–1567 (2024). https://doi.org/10.1007/s11517-024-03017-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-024-03017-y

Keywords

Navigation