Skip to main content
Log in

Applying correlation analysis to electrode optimization in source domain

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In brain computer interface-based neurorehabilitation system, a large number of electrodes may increase the difficulty of signal acquisition and the time consumption of decoding algorithm for motor imagery EEG (MI-EEG). The traditional electrode optimization methods were limited by the low spatial resolution of scalp EEG. EEG source imaging (ESI) was further applied to reduce the number of electrodes, in which either the electrodes covering activated cortical areas were selected, or the reconstructed electrodes of EEGs with higher Fisher scores were retained. However, the activated dipoles do not all contribute equally to decoding, and the Fisher score cannot represent the correlations between electrodes and dipoles. In this paper, based on ESI and correlation analysis, a novel electrode optimization method, denoted ECCEO, was developed. The scalp MI-EEG was mapped to cortical regions by ESI, and the dipoles with larger amplitudes were chosen to designate a region of interest (ROI). Then, Pearson correlation coefficients between each dipole of the ROI and the corresponding electrode were calculated, averaged, and ranked to obtain two average correlation coefficient sequences. A small but important group of electrodes for each class were alternately added to the predetermined basic electrode set to form a candidate electrode set. Their features were extracted and evaluated to determine the optimal electrode set. Experiments were conducted on two public datasets, the average decoding accuracies achieved 95.99% and 88.30%, and the reduction of computational cost were 65% and 56%, respectively; statistical significance was examined as well.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Saha S, Baumert M (2020) Intra-and inter-subject variability in EEG-based sensorimotor brain computer interface: a review. Front Comput Neurosci 13:87. https://doi.org/10.3389/fncom.2019.00087

    Article  PubMed  PubMed Central  Google Scholar 

  2. Fathima S, Kore SK (2021) Formulation of the challenges in brain-computer interfaces as optimization problems-a review. Front Neurosci 14:546656. https://doi.org/10.3389/fnins.2020.546656

    Article  PubMed  PubMed Central  Google Scholar 

  3. Frącz W (2021) Techniques, challenges and use in rehabilitation medicine of EEG-based brain-computer interfaces systems. Control, Computer Eng Neurosci 1362:72–78. https://doi.org/10.1007/978-3-030-72254-8_8

    Article  Google Scholar 

  4. Tariq M, Trivailo PM, Simic M (2018) EEG-based BCI control schemes for lower-limb assistive-robots. Front Hum Neurosci 12:312. https://doi.org/10.3389/fnhum.2018.00312

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bauer R, Fels M, Vukelić M, Ziemann U, Gharabaghi A (2015) Bridging the gap between motor imagery and motor execution with a brain-robot interface. Neuroimage 108:319–327. https://doi.org/10.1016/j.neuroimage.2014.12.026

    Article  PubMed  Google Scholar 

  6. Palumbo A, Gramigna V, Calabrese B, Ielpo N (2021) Motor-imagery EEG-based BCIs in wheelchair movement and control: a systematic literature review. Sensors 21(18):6285. https://doi.org/10.3390/s21186285

    Article  PubMed  PubMed Central  Google Scholar 

  7. Xu B, Peng S, Song A, Yang R, Pan L (2011) Robot-aided upper-limb rehabilitation based on motor imagery EEG. Int J Adv Robot Syst 8(4):40. https://doi.org/10.3724/SP.J.1218.2011.00307

    Article  Google Scholar 

  8. Klem GH, Lüders HO, Jasper HH, Elger C (1999) The ten-twenty electrode system of the international federation. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol 52(3):3–6. https://doi.org/10.1097/00006534-195205000-00008

    Article  CAS  Google Scholar 

  9. Le J, Lu M, Pellouchoud E, Gevins A (1998) A rapid method for determining standard 10/10 electrode positions for high resolution EEG studies. Electroencephalogr Clin Neurophysiol 106(6):554–558. https://doi.org/10.1016/S0013-4694(98)00004-2

    Article  CAS  PubMed  Google Scholar 

  10. Oostenveld R, Praamstra P (2001) The five percent electrode system for high-resolution EEG and ERP measurements. Clin Neurophysiol 112(4):713–719. https://doi.org/10.1016/S1388-2457(00)00527-7

    Article  CAS  PubMed  Google Scholar 

  11. Meng J, Edelman BJ, Olsoe J, Jacobs G, Zhang S, Beyko A, He B (2018) A study of the effects of electrode number and decoding algorithm on online EEG-based BCI behavioral performance. Front Neurosci 12:227. https://doi.org/10.3389/fnins.2018.00227

    Article  PubMed  PubMed Central  Google Scholar 

  12. Baig MZ, Aslam N, Shum HPH (2020) Filtering techniques for channel selection in motor imagery EEG applications: a survey. Artif Intell Rev 53:1207–1232. https://doi.org/10.1007/s10462-019-09694-8

    Article  Google Scholar 

  13. Wang Q, Cao T, Liu D, Zhang M, Lu J, Bai O, Sun J (2020) Motor imagery channel selection method based on SVM-CCA-CS. Meas Sci Technol 32(3):035701. https://doi.org/10.1088/1361-6501/abc205

    Article  CAS  Google Scholar 

  14. Sohrabpour A, Lu Y, Kankirawatana P, Blount J, Kim H, He B (2015) Effect of EEG electrode number on epileptic source localization in pediatric patients. Clin Neurophysiol 126(3):472–480. https://doi.org/10.1016/j.clinph.2014.05.038

    Article  PubMed  Google Scholar 

  15. Joadde M A M, Siuly S, Kabir E. A new way of channel selection in the motor imagery classification for BCI applications (2018) In Proceedings of international conference on health information science, HIS 2018, Cairns, QLD, Australia 110–119. https://doi.org/10.3389/fnins.2018.00227

  16. Alotaiby T, El-Samie FEA, Alshebeili SA (2015) Ahmad I (2015) A review of channel selection algorithms for EEG signal processing. EURASIP J Adv Signal Process 1:66. https://doi.org/10.1186/s13634-015-0251-9

    Article  Google Scholar 

  17. Fauzi H, Shapiai MI, Abdullah SS, Ibrahim Z (2018) Automatic energy extraction methods for EEG channel selection. 2018 international conference on control, electronics, renewable energy and communications (ICCEREC), 70–75. https://doi.org/10.1109/ICCEREC.2018.8711995.

  18. Feng J K, Jin J, Daly I, Zhou J, Niu Y, Wang X, Cichocki A (2019) An optimized channel selection method based on multifrequency CSP-rank for motor imagery-based BCI system. Comput Intell Neurosci 2019. https://doi.org/10.1155/2019/8068357

  19. Alyasseri ZAA, Khader AT, Al-Betar MA, Alomari OA (2020) Person identification using EEG channel selection with hybrid flower pollination algorithm. Pattern Recognit 105:107393. https://doi.org/10.1016/j.patcog.2020.107393

    Article  Google Scholar 

  20. Qi F, Wu W, Yu ZL, Gu Z, Wen Z, Yu T, Li Y (2021) Spatiotemporal-filtering-based channel selection for single-trial EEG classification. IEEE T Cybern 51(2):558–567. https://doi.org/10.1109/TCYB.2019.2963709

    Article  Google Scholar 

  21. Qiu Z, Jin J, Lam HK, Zhang Y, Wang X, Cichocki A (2016) Improved SFFS method for channel selection in motor imagery based BCI. Neurocomputing 207:519–527. https://doi.org/10.1016/j.neucom.2016.05.035

    Article  Google Scholar 

  22. Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, Peralta RG (2004) EEG source imaging. Clin Neurophysiol 115(10):2195–2222. https://doi.org/10.1016/j.clinph.2004.06.001

    Article  PubMed  Google Scholar 

  23. Handiru VS, Vinod AP, Guan C (2018) EEG source imaging of movement decoding: the state of the art and future directions. IEEE Trans Neural Syst Rehabil Eng 4(2):14–23. https://doi.org/10.1109/MSMC.2017.2778458

    Article  Google Scholar 

  24. Grech R, Cassar T, Muscat J, Camilleri KP, Fabri SG, Zervakis M, Xanthopoulos P, Sakkalis V, Vanrumste B (2008) Review on solving the inverse problem in EEG source analysis. J NeuroEng Rehabil 5(1):25. https://doi.org/10.1186/1743-0003-5-25

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li MA, Wang YF, Jia SM, Sun YJ, Yang JF (2019) Decoding of motor imagery EEG based on brain source estimation. Neurocomputing 339(2019):182–193. https://doi.org/10.1016/j.neucom.2019.02.006

    Article  Google Scholar 

  26. Hossain MS, Saha S, Habib MA, Noman AA, Sharfuddin T, Ahmed KI (2016) Application of wavelet-based maximum entropy on the mean in channel optimization for BCI. Presented at 2016 International Conference on Medical Engineering, Health Informatics and Technology, Dhaka, Bangladesh 1–5. https://doi.org/10.1109/MEDITEC.2016.7835394

  27. Li M A, Zhang C, Sun Y J (2017) Channel selection with EEG source imaging. 2017 2nd international conference on computational modeling, simulation and applied mathematics (CMSAM2017), Beijing, China 540–545. https://doi.org/10.12783/dtcse/cmsam2017/16430

  28. Nakahama H (1961) Functional organization of somatic areas of the cerebral cortex. Int Rev Neurobiol 3(4):187–250. https://doi.org/10.1016/S0074-7742(08)60008-2

    Article  Google Scholar 

  29. Jacobs K M (2011) Brodmann’s areas of the cortex. Encyclopedia of clinical neuropsychology. Springer New York, New York 459. https://doi.org/10.1007/978-3-319-57111-9_301

  30. Blankertz B, Müller K R, Krusienski D, Schalk G, Wolpaw J R, Schlogl A, Pfurtscheller G, Millan J R, Schroder M, Birbaumer N (2005) Bci competition iii. Fraunhofer FIRST. IDA, http://ida.first.fraunhofer.de/projects/bci/competition_iii. https://doi.org/10.1109/tnsre.2006.875642

  31. Tangermann M, Müller KR, Aertsen A, Birbaumer N, Braun C, Brunner C, Leeb R, Mehring C, Miller KJ, Müller-Putz GR, Nolte G, Pfurtscheller G, Preissl H, Schalk G, Schlögl A, Vidaurre C, Stephan S, Blankertz B (2012) Review of the BCI competition IV. Front Neurosci 6:55. https://doi.org/10.3389/fnins.2012.00055

    Article  PubMed  PubMed Central  Google Scholar 

  32. Neuper C, Scherer R, Wriessnegger S, Pfurtscheller G (2009) Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface. Clin Neurophysiol 120:239–247. https://doi.org/10.1016/j.clinph.2008.11.015

    Article  PubMed  Google Scholar 

  33. Song J, Davey C, Poulsen C, Luu P, Turovets S, Anderson E, Li K, Tucker D (2015) EEG source localization: sensor density and head surface coverage. J Neurosci Methods 256:9–21. https://doi.org/10.1016/j.jneumeth.2015.08.015

    Article  PubMed  Google Scholar 

  34. Fuchs M, Drenckhahn R, Wischmann H, Wagner M (1998) An improved boundary element method for realistic volume-conductor modeling. IEEE Trans Biomed Eng 45(8):980–997. https://doi.org/10.1109/10.704867

    Article  CAS  PubMed  Google Scholar 

  35. Jatoi M A, Kamel N, Faye I, Malik A S, Bornot J M, Begum T (2019) BEM based solution of forward problem for brain source estimation. 2015 IEEE international conference on signal and image processing applications (ICSIPA), Kuala Lumpur 180–185. https://doi.org/10.1109/ICSIPA.2015.7412186

  36. Gramfort A, Papadopoulo T, Olivi E, Clerc M (2010) OpenMEEG: opensource software for quasistatic bioelectromagnetics. Biomed Eng Online 9(1):45. https://doi.org/10.1186/1475-925X-9-45

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lancaster JL, Tordesillas-Gutiérrez D, Martinez M, Evans A, Zilles K, Mazziotta JC, Fox PT (2007) Bias between MNI and talairach coordinates analyzed using the ICBM-152 brain template. Hum Brain Mapp 28(11):1194–1205. https://doi.org/10.1002/hbm.20345

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24:5–12

    PubMed  Google Scholar 

  39. Grossmann A, Kronland-Martinet R, Morlet J (1990) Reading and understanding continuous wavelet transforms. Wavelets. Springer, Berlin, Heidelberg 2–20. https://doi.org/10.1007/978-3-642-75988-8_1

  40. Li MA, Dong YX, Sun YJ, Yang JF, Duan LJ (2020) Subject-based dipole selection for decoding motor imagery tasks. Neurocomputing 402:195–208. https://doi.org/10.1016/j.neucom.2020.03.055

    Article  Google Scholar 

  41. Müller-Gerking J, Pfurtscheller G, Flyvbjerg H (1999) Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin Neurophysiol 110(5):787–798. https://doi.org/10.1016/S1388-2457(98)00038-8

    Article  PubMed  Google Scholar 

  42. Li M, Wang R, Xu D (2020) An improved composite multiscale fuzzy entropy for feature extraction of MI-EEG. Entropy (Basel) 22(12):1356. https://doi.org/10.3390/e22121356

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the provider of the datasets and all of the people who have given us helpful suggestions and advice. The authors are obliged to the anonymous referee for carefully looking over the details and for useful comments which improved this paper.

Funding

This work was financially supported by the National Key Research and Development Program of China (No. 2020YFC2004400) and the National Natural Science Foundation of China (No. 62173010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingai Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Yuxin Dong and Linlin Wang are co-first authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Wang, L. & Li, M. Applying correlation analysis to electrode optimization in source domain. Med Biol Eng Comput 61, 1225–1238 (2023). https://doi.org/10.1007/s11517-023-02770-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02770-w

Keywords

Navigation