Skip to main content

Advertisement

Log in

Identification of effective features of LFP signal for making closed-loop deep brain stimulation in parkinsonian rats

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Traditional deep brain stimulation (DBS) is one of the acceptable methods to relieve the clinical symptoms of Parkinson’s disease in its advanced stages. Today, the use of closed-loop DBS to increase stimulation efficiency and patient satisfaction is one of the most important issues under investigation. The present study was aimed to find local field potential (LFP) features of parkinsonian rats, which can determine the timing of stimulation with high accuracy. The LFP signals from rats were recorded in three groups of parkinsonian rat models receiving stimulation (stimulation), without getting stimulation (off-stimulation), and sham-controlled group. The frequency domain and chaotic features of signals were extracted for classifying three classes by support vector machine (SVM) and neural networks. The best combination of features was selected using the genetic algorithm (GA). Finally, the effective features were introduced to determine the on/off stimulation time, and the optimal stimulation parameters were identified. It was found that a combination of frequency domain and chaotic features with an accuracy of about 99% was able to determine the time the DBS must switch on. In about 80.67% of the 1861 different stimulation parameters, the brain was able to maintain its state for about 3 min after stimulation discontinuation.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhao D, Sun Q, Cheng S, He M, Chen X, Hou X (2018) Extraction of Parkinson’s disease-related features from local field potentials for adaptive deep brain stimulation. Neurophysiology 50:57–67

    Google Scholar 

  2. Little S, Brown P (2012) What brain signals are suitable for feedback control? Ann N Y Acad Sci 1265:9–24

    PubMed  PubMed Central  Google Scholar 

  3. Groiss SJ, Wojtecki L, Südmeyer M, Schnitzler A (2009) Deep brain stimulation in Parkinson’s disease. Ther Adv Neurol Disord 2:379–391

    Google Scholar 

  4. Amboni M, Santangelo G, Barone P (2015) Depression, apathy, anhedonia, and fatigue in Parkinson’s disease. Neuropsychiatr Symptoms Neurol Disease 1–28

  5. Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C, Koudsie A, Limousin PD, Benazzouz A, LeBas JF, Benabid AL (2003) Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 349(20):1925–34

    CAS  PubMed  Google Scholar 

  6. Schüpbach WM, Chastan N, Welter ML, Houeto JL, Mesnage V, Bonnet AM, Czernecki V, Maltete D, Hartmann A, Mallet L, Pidoux B (2005) Stimulation of the subthalamic nucleus in Parkinson’s disease: a 5 year follow up. J Neurol Neurosurg Psychiatry 76(12):1640–4

    PubMed  PubMed Central  Google Scholar 

  7. Weaver FM, Follett K, Stern M, Hur K, Harris C, Marks WJ, Rothlind J, Sagher O, Reda D, Moy CS, Pahwa R (2009) Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. Jama 301(1):63–73

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wagle Shukla A, Zeilman P, Fernandez H, Bajwa JA, Mehanna R (2017) DBS programming: an evolving approach for patients with Parkinson’s disease. Parkinson’s Disease 1-11

  9. Hell F, Palleis C, Mehrkens JH, Koeglsperger T, Bötzel K (2019) Deep brain stimulation programming 2.0: future perspectives for target identification and adaptive closed loop stimulation. Front Neurol 10

  10. Pan S, Iplikci S, Warwick K, Aziz TZ (2012) Parkinson’s disease tremor classification–a comparison between support vector machines and neural networks. Expert Syst Applic 39(12):10764–71

    Google Scholar 

  11. Ghasemi P, Sahraee T, Mohammadi A (2018) Closed-and open-loop deep brain stimulation: methods, challenges, current and future aspects. J Biomed Phys Eng 8(2):209

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lozano AM, Lipsman N, Bergman H, Brown P, Chabardes S, Chang JW, Matthews K, McIntyre CC, Schlaepfer TE, Schulder M, Temel Y (2019) Deep brain stimulation: current challenges and future directions. Nat Rev Neurol 15(3):148–60

    PubMed  PubMed Central  Google Scholar 

  13. Parastarfeizabadi M, Kouzani AZ (2017) Advances in closed-loop deep brain stimulation devices. J Neuroeng Rehab 14(1):79

    Google Scholar 

  14. Wiecki TV, Poland J, Frank MJ (2015) Model-based cognitive neuroscience approaches to computational psychiatry: clustering and classification. Clin Psychol Sci 3(3):378–99

    Google Scholar 

  15. Liu C, Wang J, Deng B, Wei XL, Yu HT, Li HY (2015) Variable universe fuzzy closed-loop control of tremor predominant Parkinsonian state based on parameter estimation. Neurocomputing 151:1507–18

    Google Scholar 

  16. Mohammed A, Zamani M, Bayford R, Demosthenous A (2017) Toward on-demand deep brain stimulation using online Parkinson’s disease prediction driven by dynamic detection. IEEE Trans Neural Syst Rehab Eng 25(12):2441–52

    Google Scholar 

  17. Ramirez-Zamora A, Giordano JJ, Gunduz A, Brown P, Sanchez JC, Foote KD, Almeida L, Starr PA, Bronte-Stewart HM, Hu W, McIntyre C (2018) Evolving applications, technological challenges and future opportunities in neuromodulation: proceedings of the fifth annual deep brain stimulation think tank. Front Neurosci 11:734

    PubMed  PubMed Central  Google Scholar 

  18. Priori A, Foffani G, Rossi L, Marceglia S (2013) Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Exp Neurol 245:77–86

    PubMed  Google Scholar 

  19. Friston KJ, Bastos AM, Pinotsis D, Litvak V (2015) LFP and oscillations—what do they tell us? Curr Opin Neurobiol 31:1–6

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Habets JG, Heijmans M, Kuijf ML, Janssen ML, Temel Y, Kubben PL (2018) An update on adaptive deep brain stimulation in Parkinson’s disease. Mov Disord 33(12):1834–43

    PubMed  PubMed Central  Google Scholar 

  21. Chen Y et al (2019) Automatic Sleep Stage Classification Based on Subthalamic Local Field Potentials. IEEE Trans Neural Syst Rehabil Eng 27(2):118–128

    PubMed  PubMed Central  Google Scholar 

  22. Rosin B et al (2011) closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron. 72(2):370–384

    CAS  PubMed  Google Scholar 

  23. Hell F et al (2019) Deep brain stimulation programming 2.0 future perspectives for target identification and adaptive closed loop stimulation. Front Neurol. 10(314):1–11

    Google Scholar 

  24. Mugge L, Krafcik B, Pontasch G, Alnemari A, Neimat J, Gaudin D (2019) A review of biomarkers use in Parkinson with deep brain stimulation: a successful past promising a bright future. World Neurosurg 123:197–207

    PubMed  Google Scholar 

  25. Yoshida F, Martinez-Torres I, Pogosyan A, Holl E, Petersen E, Chen CC, Foltynie T, Limousin P, Zrinzo LU, Hariz MI, Brown P (2010) Value of subthalamic nucleus local field potentials recordings in predicting stimulation parameters for deep brain stimulation in Parkinson’s disease. J Neurol Neurosurg Psychiatry 81(8):885–9

    PubMed  Google Scholar 

  26. Nakao N, Nakai E, Nakai K, Itakura T (1999) Ablation of the subthalamic nucleus supports the survival of nigral dopaminergic neurons after nigrostriatal lesions induced by the mitochondrial toxin 3-nitropropionic acid. Ann Neurol 45(5):640–51

    CAS  PubMed  Google Scholar 

  27. Spieles-Engemann AL, Behbehani MM, Collier TJ, Wohlgenant SL, Steece-Collier K, Paumier K, Daley BF, Gombash S, Madhavan L, Mandybur GT, Lipton JW (2010) Stimulation of the rat subthalamic nucleus is neuroprotective following significant nigral dopamine neuron loss. Neurobiol Dis 39(1):105–15

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Temel Y, Visser-Vandewalle V, Kaplan S, Kozan R, Daemen MA, Blokland A, Schmitz C, Steinbusch HW (2006) Protection of nigral cell death by bilateral subthalamic nucleus stimulation. Brain Res 1120(1):100–5

    CAS  PubMed  Google Scholar 

  29. Wallace BA, Ashkan K, Heise CE, Foote KD, Torres N, Mitrofanis J, Benabid AL (2007) Survival of midbrain dopaminergic cells after lesion or deep brain stimulation of the subthalamic nucleus in MPTP-treated monkeys. Brain 130(8):2129–45

    PubMed  Google Scholar 

  30. Maesawa S, Kaneoke Y, Kajita Y, Usui N, Misawa N, Nakayama A, Yoshida J (2004) Long-term stimulation of the subthalamic nucleus in hemiparkinsonian rats: neuroprotection of dopaminergic neurons. J Neurosurg 100(4):679–87

    CAS  PubMed  Google Scholar 

  31. Jakobs M, Fomenko A, Lozano AM, Kiening KL (2019) Cellular, molecular, and clinical mechanisms of action of deep brain stimulation—a systematic review on established indications and outlook on future developments. EMBO Mol Med 11(4)

  32. Piallat B, Benazzouz A, Benabid AL (1996) Subthalamic nucleus lesion in rats prevents dopaminergic nigral neuron degeneration after striatal 6-OHDA injection: behavioural and immunohistochemical studies. Eur J Neurosci 8(7):1408–14

    CAS  PubMed  Google Scholar 

  33. Meredith GE, Kang UJ (2006) Behavioral models of Parkinson’s disease in rodents: a new look at an old problem. Mov Disord 21(10):1595–606

    PubMed  Google Scholar 

  34. Spieles-Engemann AL, Collier TJ, Sortwell CE (2010) A functionally relevant and long-term model of deep brain stimulation of the rat subthalamic nucleus: advantages and considerations. Eur J Neurosci 32(7):1092–9

    CAS  PubMed  Google Scholar 

  35. Koprich JB, Johnston TH, Reyes MG, Sun X, Brotchie JM (2010) Expression of human A53T alpha-synuclein in the rat substantia nigra using a novel AAV1/2 vector produces a rapidly evolving pathology with protein aggregation, dystrophic neurite architecture and nigrostriatal degeneration with potential to model the pathology of Parkinson’s disease. Mol Neurodegener. 5(1):43

    PubMed  PubMed Central  Google Scholar 

  36. Koprich JB et al (2011) Progressive neurodegeneration or endogenous compensation in an animal model of Parkinson’s disease produced by decreasing doses of alphasynuclein. PLoS One 6(3):e17698

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Musacchio T, Rebenstorff M, Fluri F, Brotchie JM, Volkmann J, Koprich JB, Ip CW (2017) Subthalamic nucleus deep brain stimulation is neuroprotective in the A53T α-synuclein Parkinson’s disease rat model. Ann Neurol 81(6):825–36

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Blandini F, Armentero MT, Martignoni E (2008) The 6-hydroxydopamine model: news from the past. Parkinsonism Relat Disord 14:S124-9

    PubMed  Google Scholar 

  39. Bové J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson’s disease. NeuroRx 2(3):484–94

    PubMed  PubMed Central  Google Scholar 

  40. Amoozegar S, Pooyan M, Roughani M (2019) Toward a closed-loop deep brain stimulation in Parkinson’s disease using local field potential in parkinsonian rat model. Med Hypotheses 132:109360

    PubMed  Google Scholar 

  41. Joghataei MT, Roghani M, Negahdar F, Hashemi L (2004) Protective effect of caffeine against neurodegeneration in a model of Parkinson’s disease in rat: behavioral and histochemical evidence. Parkinsonism Relat Disord 10(8):465–8

    Google Scholar 

  42. Baluchnejadmojarad T, Roghani M (2004) Evaluation of functional asymmetry in rats with dose-dependent lesions of dopaminergic nigrostriatal system using elevated body swing test. Physiol Behav 82(2–3):369–373

    CAS  PubMed  Google Scholar 

  43. Roghani M, Niknam A, Jalali-Nadoushan MR, Kiasalari Z, Khalili M, Baluchnejadmojarad T (2010) Oral pelargonidin exerts dose-dependent neuroprotection in 6-hydroxydopamine rat model of hemi-parkinsonism. Brain Res Bull 82(5–6):279 (283)

    CAS  PubMed  Google Scholar 

  44. Hilborn Robert C (2000) Chaos and nonlinear dynamics: an introduction for scientists and engineers. Oxford University Press on Demand

  45. Iasemidis LD, Sackellares JC, Zaveri HP, Williams WJ (1990) Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures. Brain Topogr 2(3):187–201

    CAS  PubMed  Google Scholar 

  46. Borg FG (2005) Review of nonlinear methods and modelling. arXiv preprint physics/0503026

  47. Corron NJ, Hayes ST, Pethel SD, Blakely JN (2006) Chaos without nonlinear dynamics. Phys Rev Lett 97(2):024101

    PubMed  Google Scholar 

  48. Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a time series. Physica D Nonlinear Phenomena. 16(3):285–317

    Google Scholar 

  49. TenBroek TM, Van Emmerik RE, Hasson CJ, Hamill J (2007) Lyapunov exponent estimation for human gait acceleration signals. J Biomech 40(2):S210

    Google Scholar 

  50. Rosenstein MT, Collins JJ, De Luca CJ (1993) A practical method for calculating largest Lyapunov exponents from small data sets. Physica D Nonlinear Phenomena 65(1–2):117–34

    Google Scholar 

  51. Chang JS, Kim EY, Jung D, Jeong SH, Kim Y, Roh MS, Ahn YM, Hahm BJ (2015) Altered cardiorespiratory coupling in young male adults with excessive online gaming. Biol Psychol 110:159–66

    PubMed  Google Scholar 

  52. Fukunaga K (1972) Introduction to statistical pattern recognition, 2nd edn. Academic Press, New York

    Google Scholar 

  53. E. Ebrahimzadeh, M. S. Manuchehri, S. Amoozegar, B. N. Araabi, H (2017) Soltanian-Zadeh “A time local subset feature selection for prediction of sudden cardiac death from ECG signal”. Med Biol Eng Comput 56(7) https://doi.org/10.1007/s11517-017-1764-1

  54. Ebrahimzadeh E, Shams M, Rahimpour A, Fayaz F, Mirbagheri M, Hakimi N, HashemiFesharaki SS, Soltanian-Zadeh H (2019) Epilepsy presurgical evaluation of patients with complex source localization by a novel component-based EEG-fMRI approach. Iran J Radiol 16(1):e99134. https://doi.org/10.5812/iranjradiol.99134

    Article  Google Scholar 

  55. Ebrahimzadeh ME, Shams A (2020) Rahimpour Jounghani, et al. Localizing confined epileptic foci in patients with an unclear focus or presumed multifocality using a component-based EEG-fMRI method. Cogn Neurodyn https://doi.org/10.1007/s11571-020-09614-5

  56. Amoozegar S, Pooyan M, Ebrahimzadeh E (2013) Classification of brain signals in normal subjects and patients with epilepsy using mixture of experts. Int J Eng Intell Syst Electr Eng Commun 4(1):1–8

    Google Scholar 

  57. Ebrahimzadeh E, Amoozegar S, Asgarinejad MM, Dolatabad MR, Bagheri M, Soroush MZ (2019) Simultaneous EEG-fMRI: a multimodality approach to localize the seizure onset zone in patients with epilepsy. Int J Biol Med 1:130–139. https://doi.org/10.36811/ijbm.2019.110017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Pooyan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amoozegar, S., Pooyan, M. & Roghani, M. Identification of effective features of LFP signal for making closed-loop deep brain stimulation in parkinsonian rats. Med Biol Eng Comput 60, 135–149 (2022). https://doi.org/10.1007/s11517-021-02470-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02470-3

Keywords

Navigation