Skip to main content
Log in

Speedup computation of HD-sEMG signals using a motor unit-specific electrical source model

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Nowadays, bio-reliable modeling of muscle contraction is becoming more accurate and complex. This increasing complexity induces a significant increase in computation time which prevents the possibility of using this model in certain applications and studies. Accordingly, the aim of this work is to significantly reduce the computation time of high-density surface electromyogram (HD-sEMG) generation. This will be done through a new model of motor unit (MU)-specific electrical source based on the fibers composing the MU. In order to assess the efficiency of this approach, we computed the normalized root mean square error (NRMSE) between several simulations on single generated MU action potential (MUAP) using the usual fiber electrical sources and the MU-specific electrical source. This NRMSE was computed for five different simulation sets wherein hundreds of MUAPs are generated and summed into HD-sEMG signals. The obtained results display less than 2% error on the generated signals compared to the same signals generated with fiber electrical sources. Moreover, the computation time of the HD-sEMG signal generation model is reduced to about 90% compared to the fiber electrical source model. Using this model with MU electrical sources, we can simulate HD-sEMG signals of a physiological muscle (hundreds of MU) in less than an hour on a classical workstation.

Overview of the simulation of HD-sEMG signals using the fiber scale and the MU scale. Upscaling the electrical source to the MU scale reduces the computation time by 90% inducing only small deviation of the same simulated HD-sEMG signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Farina D, Merletti R (2001) A novel approach for precise simulation of the EMG signal detected by surface electrodes. IEEE Transactions on BioMedical Engineering 48(6):637–646

    Article  PubMed  CAS  Google Scholar 

  2. Farina D, Mesin L, Martina S, Merletti R (2004) A surface EMG generation model with multilayer cylindrical description of the volume conductor. IEEE Trans Biomed Eng 51(3):415–426

    Article  PubMed  Google Scholar 

  3. Blok JH, Stegeman DF, Oosterom Av (2002) Three-layer volume conductor model and software package for applications in surface electromyography. Ann Biomed Eng 30(4):566–577

    Article  PubMed  CAS  Google Scholar 

  4. Carriou V, Boudaoud S, Laforet J, Ayachi FS (2016) Fast generation model of high density surface EMG signals in a cylindrical conductor volume. Comput Biol Med 74:54–68

    Article  PubMed  Google Scholar 

  5. Clark J, Plonsey R (1968) The extracellular potential field of the single active nerve fiber in a volume conductor. Biophys J 8(7):842–864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Fuglevand AJ, Winter DA, Patla AE, Stashuk D (1992) Detection of motor unit action potentials with surface electrodes: influence of electrode size and spacing. Biol Cybern 67(2):143–153

    Article  PubMed  CAS  Google Scholar 

  7. Gootzen THJM, Stegeman DF, Heringa A (1989) On numerical problems in analytical calculations of extracellular fields in bounded cylindrical volume conductors. J Appl Phys 66(9):4504–4508

    Article  Google Scholar 

  8. Roeleveld K, Blok JH, Stegeman DF, van Oosterom A (1997) Volume conduction models for surface EMG: confrontation with measurements. J Electromyogr Kinesiol 7(4):221–232

    Article  PubMed  CAS  Google Scholar 

  9. McGill KC (2004) Surface electromyogram signal modelling. Med Biol Eng Comput 42(4):446–454

    Article  PubMed  CAS  Google Scholar 

  10. Lowery M, Stoykov N, Taflove A, Kuiken T (2002) A multiple-layer finite-element model of the surface EMG signal. IEEE Trans Biomed Eng 49(5):446–454

    Article  PubMed  Google Scholar 

  11. Dimitrov GV, Dimitrova NA (1998) Precise and fast calculation of the motor unit potentials detected by a point and rectangular plate electrode. Med Eng Phys 20(5):374–381

    Article  PubMed  CAS  Google Scholar 

  12. Fuglevand AJ, Winter DA, Patla AE (1993) Models of recruitment and rate coding organization in motor-unit pools. J Neurophys 70(6):2470–2488

    Article  CAS  Google Scholar 

  13. Rosenfalck P (1969) Intra- and extracellular potential fields of active nerve and muscle fibres. a physico-mathematical analysis of different models. Thrombosis Et Diathesis Haemorrhagica Supplementum 321:1–168

    CAS  Google Scholar 

  14. Heidlauf T, Rohrle O (2013) Modeling the Chemoelectromechanical Behavior of Skeletal Muscle Using the Parallel Open-Source Software Library openCMISS. Comput Math Methods Med 2013. https://doi.org/10.1155/2013/517287

  15. Carriou V, Laforet J, Boudaoud S, Harrach MA (2016) Sensitivity analysis of HD-sEMG amplitude descriptors relative to grid parameter variations of a cylindrical multilayered muscle model. Biomedical Physics & Engineering Express 2(6). https://doi.org/10.1088/2057-1976/2/6/064001

  16. Stegeman DF, Blok JH, Hermens HJ, Roeleveld K (2000) Surface EMG models: properties and applications. J Electromyogr Kinesiol 10(5):313–326

    Article  PubMed  CAS  Google Scholar 

  17. Merletti R, Parker PA (2004) Electromyography: physiology, engineering, and non-invasive applications. John Wiley, Hoboken

  18. Wallinga W, Meijer SL, Alberink MJ, Vliek M, Wienk ED, Ypey DL (1999) Modelling action potentials and membrane currents of mammalian skeletal muscle fibres in coherence with potassium concentration changes in the T-tubular system. Eur Biophys J EBJ 28(4):317–329

    Article  PubMed  CAS  Google Scholar 

  19. Carriou V, Laforet J, Boudaoud S, Harrach MA (2016) Realistic motor unit placement in a cylindrical HD-sEMG generation model. In: 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 1704–1707

  20. Masuda T, Miyano H, Sadoyama T (1985) The position of innervation zones in the biceps brachii investigated by surface electromyography. IEEE Trans Biomed Eng BME-32(1):36–42

    Article  Google Scholar 

  21. Ayachi FS, Boudaoud S, Marque C (2014) Evaluation of muscle force classification using shape analysis of the sEMG probability density function: a simulation study. Med Biol Eng Comput 52(8):673–684

    Article  PubMed  CAS  Google Scholar 

  22. Arabadzhiev TI, Dimitrov VG, Dimitrova NA, Dimitrov GV (2009) Influence of motor unit synchronization on amplitude characteristics of surface and intramuscularly recorded EMG signals. Eur J Appl Physiol 108(2):227–237

    Article  PubMed  Google Scholar 

  23. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7(4):308–313

    Article  Google Scholar 

  24. Brown MB, Forsythe AB (1960) Robust tests for the equality of variances. J Am Stat Assoc 69(346):364–367

    Article  Google Scholar 

  25. Klein CS, Marsh GD, Petrella RJ, Rice CL (2003) Muscle fiber number in the biceps brachii muscle of young and old men. Muscle Nerve 28(1):62–68

    Article  PubMed  Google Scholar 

  26. Farina D, Cescon C, Merletti R (2002) Influence of anatomical, physical, and detection-system parameters on surface EMG. Biol Cybern 86(6):445–456

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Carriou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carriou, V., Boudaoud, S. & Laforet, J. Speedup computation of HD-sEMG signals using a motor unit-specific electrical source model. Med Biol Eng Comput 56, 1459–1473 (2018). https://doi.org/10.1007/s11517-018-1784-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-018-1784-5

Keywords

Navigation