Skip to main content
Log in

Amount of weight loss or gain influences the severity of respiratory events in sleep apnea

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Severity of obstructive sleep apnea (OSA) is estimated based on respiratory events per hour [i.e., apnea–hypopnea index (AHI)]. The aim of this study was to investigate effects of weight change on the severity of respiratory events. Respiratory event severity, including duration and morphology, was estimated by determining parameters quantifying obstruction and desaturation event lengths and areas, respectively. Respiratory events of 54 OSA patients treated with dietary intervention were evaluated at baseline and after 5-year follow-up in subgroups with different levels of weight change. AHI, oxygen desaturation index (ODI) and obstruction event severities decreased during weight loss. In lower level weight loss, the decrease was milder in obstruction severity than in AHI and ODI, indicating that the decrease in the number of events is more focused on less severe events. In weight gain groups, parameters incorporating obstruction event severity, AHI and ODI increased, although increase was greater in parameters incorporating obstruction event severity. The number and severity of respiratory events were modulated differently by the level of weight change. AHI misses this change in the severity of respiratory events. Therefore, parameters incorporating information on the respiratory event severities may bring additional information on the health effects obtained with dietary treatment of OSA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. American Academy of Sleep Medicine (1999) Sleep-related breathing disorders in adults: recommendations for syndrome definition and measurement techniques in clinical research. Sleep 22:667–689

    Google Scholar 

  2. Araghi MH, Chen YF, Jagielski A, Choudhury S, Banerjee D, Hussain S, Thomas GN, Taheri S (2013) Effectiveness of lifestyle interventions on obstructive sleep apnea (OSA): systematic review and meta-analysis. Sleep 36:1553–1562

    PubMed Central  PubMed  Google Scholar 

  3. Bédard MA, Montplaisir J, Richer F, Malo J (1991) Nocturnal hypoxemia as a determinant of vigilance impairment in sleep apnea syndrome. Chest 100:367–370

    Article  PubMed  Google Scholar 

  4. Berger G, Berger R, Oksenberg A (2009) Progression of snoring and obstructive sleep apnoea: the role of increasing weight and time. Eur Respir J 33:338–345

    Article  CAS  PubMed  Google Scholar 

  5. Berry R, Brooks R, Gamaldo C, Harding S, Marcus C, Vaughn B (AASM) (2012) The AASM manual for the scoring of sleep and associated events, rules, terminology and technical specification

  6. Chervin RD, Burns JW (2011) Engineering better sleep. Med Biol Eng Comput 49:623–625

    Article  PubMed Central  PubMed  Google Scholar 

  7. Collop NA, McDowell Anderson W, Boehlecke B, Claman D, Goldberg R, Gottlieb DJ, Satela M, Schwab R (2007) Clinical guidelines for the use of unattended portable monitors in the diagnosis of obstructive sleep apnea in adult patients. J Clin Sleep Med 3:737–747

    PubMed  Google Scholar 

  8. Drager LF, Polotsky VY, Lorenzi-Filho G (2011) Obstructive sleep apnea: an emerging risk factor for atherosclerosis. Chest 140:534–542

    Article  PubMed Central  PubMed  Google Scholar 

  9. Foster GD, Borradaile KE, Sanders MH, Millman R, Zammit G, Newman AB, Wadden TA, Kelley D, Wing RR, Pi-Sunyer FX, Reboussin D, Kuna ST (2009) A randomized study on the effect of weight loss on obstructive sleep apnea among obese patients with type 2 diabetes: the Sleep AHEAD study. Arch Intern Med 169:1619–1626

    Article  PubMed Central  PubMed  Google Scholar 

  10. Iber C, Ancoli-Israel S, Chesson AL, Quan SF (2007) The AASM manual for the scoring of sleep and associated events: rules, terminology, and technical specifications. American Academy of Sleep Medicine, Westchester, pp 17–59

    Google Scholar 

  11. Johansson K, Neoviusm M, Lagerrosm YT, Harlid R, Rössner S, Granath F, Hemmingsson E (2009) Effect of a very low energy diet on moderate and severe obstructive sleep apnoea in obese men: a randomised controlled trial. BMJ 339:b460

    Article  Google Scholar 

  12. Kulkas A, Tiihonen P, Eskola K, Julkunen P, Mervaala E, Töyräs J (2013) Novel parameters for evaluating severity of sleep disordered breathing and for supporting diagnosis of sleep apnea-hypopnea syndrome. J Med Eng Technol 37:135–143

    Article  CAS  PubMed  Google Scholar 

  13. Kulkas A, Tiihonen P, Julkunen P, Mervaala E, Töyräs J (2013) Novel parameters indicate significant differences in severity of obstructive sleep apnea with patients having similar apnea–hypopnea index. Med Biol Eng Comput 51:697–708

    Article  PubMed  Google Scholar 

  14. Kulkas A, Leppänen T, Sahlman J, Tiihonen P, Mervaala E, Kokkarinen J, Randell J, Seppä J, Tuomilehto H, Töyräs J (2013) Novel parameters reflect changes in morphology of respiratory events during weight loss. Physiol Meas 34:1013–1026

    Article  CAS  PubMed  Google Scholar 

  15. Kulkas A, Leppänen T, Sahlman J, Tiihonen P, Mervaala E, Kokkarinen J, Randell J, Seppä J, Töyräs J, Tuomilehto H (2014) Weight loss alters severity of individual nocturnal respiratory events depending on sleeping position. Physiol Meas 35:2037–2052

    Article  CAS  PubMed  Google Scholar 

  16. Kulkas A, Huupponen E, Virkkala J, Tenhunen M, Saastamoinen A, Rauhala E, Himanen SL (2009) New tracheal sound feature for apnoea analysis. Med Biol Eng Comput 47:405–412

    Article  CAS  PubMed  Google Scholar 

  17. Kulkas A, Rauhala E, Huupponen E, Virkkala J, Tenhunen M, Saastamoinen A, Himanen SL (2008) Detection of compressed tracheal sound patterns with large amplitude variation during sleep. Med Biol Eng Comput 46:315–321

    Article  CAS  PubMed  Google Scholar 

  18. Marin JM, Carrizo SJ, Vicente E, Agusti AG (2005) Long-term cardiovascular outcomes in men 25 with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 365:1046–1053

    Article  PubMed  Google Scholar 

  19. Mediano O, Barceló A, de la Peña M, Gozal D, Agustí A, Barbé F (2007) Daytime sleepiness and polysomnographic variables in sleep apnoea patients. Eur Respir J 30:110–113

    Article  CAS  PubMed  Google Scholar 

  20. Muraja-Murro A, Nurkkala J, Tiihonen P, Hukkanen T, Tuomilehto H, Kokkarinen J, Mervaala E, Töyräs J (2012) Total duration of apnea and hypopnea events and average desaturation show significant variation in patients with a similar apnea-hypopnea index. J Med Eng Technol 36:393–398

    Article  CAS  PubMed  Google Scholar 

  21. Muraja-Murro A, Kulkas A, Hiltunen M, Kupari S, Hukkanen T, Tiihonen P, Mervaala E, Töyräs J (2013) The severity of individual obstruction events is related to increased mortality rate in severe obstructive sleep apnea. J Sleep Res 22:663–669

    Article  PubMed  Google Scholar 

  22. Muraja-Murro A, Kulkas A, Hiltunen M, Kupari S, Hukkanen T, Tiihonen P, Mervaala E, Töyräs J (2014) Adjustment of apnea-hypopnea index with severity of obstruction events enhances detection of sleep apnea patients with the highest risk of severe health consequences. Sleep Breath 18:641–647

    Article  CAS  PubMed  Google Scholar 

  23. Myllymaa S, Myllymaa K, Kupari S, Kulkas A, Leppänen T, Tiihonen P, Mervaala E, Seppä J, Tuomilehto H, Töyräs J (2015) Effect of different oxygen desaturation threshold levels on hypopnea scoring and classification of severity of sleep apnea. Sleep Breath (in press). doi:10.1007/s11325-015-1118-x

    Google Scholar 

  24. Newman AB, Foster G, Givelber R, Nieto FJ, Redline S, Young T (2005) Progression and regression of sleep-disordered breathing with changes in weight: the Sleep Heart Health Study. Arch Intern Med 165:2408–2413

    Article  PubMed  Google Scholar 

  25. Pahkala R, Seppä J, Ikonen A, Smirnov G, Tuomilehto H (2014) The impact of pharyngeal fat tissue on the pathogenesis of obstructive sleep apnea. Sleep Breath 18:275–282

    Article  CAS  PubMed  Google Scholar 

  26. Peppard P, Young T, Palta M, Dempsey J, Skatrud J (2000) Longitudinal study of moderate weight change and sleep-disordered breathing. JAMA 284:3015–3021

    Article  CAS  PubMed  Google Scholar 

  27. Peppard PE, Ward NR, Morrell MJ (2009) The impact of obesity on oxygen desaturation during sleep-disordered breathing. Am J Respir Crit Care Med 180:788–793

    Article  PubMed Central  PubMed  Google Scholar 

  28. Punjabi NM, Caffo BS, Goodwin JL, Gottlieb DJ, Newman AB, O’Connor GT, Rapoport DM, Redline S, Resnick HE, Robbins JA, Shahar E, Unruh ML, Samet JM (2009) Sleep disordered breathing and mortality: a prospective cohort study. PLoS Med 6:e1000132

    Article  PubMed Central  PubMed  Google Scholar 

  29. Ruehland WR, Rochford PD, O’Donoghue FJ, Pierce RJ, Singh P, Thornton AT (2009) The new AASM criteria for scoring hypopneas: impact on the apnea hypopnea index. Sleep 32:150–157

    PubMed Central  PubMed  Google Scholar 

  30. Sahlman J, Miettinen K, Peuhkurinen K, Seppä J, Peltonen M, Herder C, Punnonen K, Vanninen E, Gylling H, Partinen M, Uusitupa M, Tuomilehto H (2010) The activation of the inflammatory cytokines in overweight patients with mild obstructive sleep apnoea. J Sleep Res 19:341–348

    Article  PubMed  Google Scholar 

  31. Sato M, Suzuki M, Suzuki J, Endo Y, Chiba Y, Matsuura M, Nakagawa K, Mataki S, Kurosaki N, Hasegawa M (2008) Overweight patients with severe sleep apnea experience deeper oxygen desaturation at apneic events. J Med Dent Sci 55:43–47

    PubMed  Google Scholar 

  32. Schwartz AR, Gold AR, Schubert N, Stryzak A, Wise RA, Permutt S, Smith PL (1991) Effect of weight loss on upper airway collapsibility in obstructive sleep apnea. Am Rev Respir Dis 144:494–498

    Article  CAS  PubMed  Google Scholar 

  33. Schwartz AR, Patil SP, Squier S, Schneider H, Kirkness JP, Smith PL (2010) Obesity and upper airway control during sleep. J Appl Physiol 108:430–435

    Article  PubMed Central  PubMed  Google Scholar 

  34. Somers VK, White DP, Amin R, Abraham WT, Costa F, Culebras A, Daniels S, Floras JS, Hunt CE, Olson LJ, Pickering TG, Russell R, Woo M, Young T (2008) Sleep apnea and cardiovascular disease. Circulation 118:1080–1111

    Article  PubMed  Google Scholar 

  35. Tiihonen P, Pääkkönen A, Mervaala E, Hukkanen T, Töyräs J (2009) Design, construction and evaluation of an ambulatory device for screening of sleep apnea. Med Biol Eng Comput 47:59–66

    Article  CAS  PubMed  Google Scholar 

  36. Tuomilehto H, Gylling H, Peltonen M, Martikainen T, Sahlman J, Kokkarinen J, Randell J, Tukiainen H, Vanninen E, Partinen M, Tuomilehto J, Uusitupa M, Seppä J (2010) Sustained improvement in mild obstructive sleep apnea after a diet- and physical activity-based lifestyle intervention: postinterventional follow-up. Am J Clin Nutr 92:688–696

    Article  CAS  PubMed  Google Scholar 

  37. Tuomilehto HP, Seppä JM, Partinen MM, Peltonen M, Gylling H, Tuomilehto JO, Vanninen EJ, Kokkarinen J, Sahlman JK, Martikainen T, Soini EJ, Randell J, Tukiainen H, Uusitupa M (2009) Lifestyle intervention with weight reduction: first-line treatment in mild obstructive sleep apnea. Am J Respir Crit Care Med 179:320–327

    Article  PubMed  Google Scholar 

  38. Tuomilehto H, Seppä J, Uusitupa M, Tuomilehto J, Gylling H (2013) Weight reduction and increased physical activity to prevent the progression of obstructive sleep apnea: a 4-year observational postintervention follow-up of a randomized clinical trial. JAMA Intern Med 173:930–932

    Article  Google Scholar 

  39. Yadollahi A, Giannouli E, Moussavi Z (2010) Sleep apnea monitoring and diagnosis based on pulse oximetry and tracheal sound signals. Med Biol Eng Comput 48:1087–1097

    Article  PubMed  Google Scholar 

  40. Young T, Peppard PE, Gottlieb DJ (2002) Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med 165:1217–1239

    Article  PubMed  Google Scholar 

  41. Young T, Peppard PE, Taheri S (2005) Excess weight and sleep-disordered breathing. J Appl Physiol 99:1592–1599

    Article  PubMed  Google Scholar 

  42. Young T, Palta M, Dempsey J, Peppard PE, Nieto FJ, Hla KM (2009) Burden of sleep apnea: rationale, design, and major findings of the Wisconsin Sleep Cohort study. WMJ 108:246–249

    PubMed Central  PubMed  Google Scholar 

  43. Young T, Skatrud J, Peppard PE (2004) Risk factors for obstructive sleep apnea in adults. JAMA 291:2013–2016

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was financially supported by the Seinäjoki Central Hospital, the Competitive State Research Financing of the Expert Responsibility Area of Tampere University Hospital, Grant numbers VTR3040 and VTR3114 and Kuopio University Hospital (Competitive State Research Financing, Project 5041732 and Project 5041740). The authors have no financial or personal relationships with other people or organization that could have inappropriately influenced the study presented in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kulkas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkas, A., Leppänen, T., Sahlman, J. et al. Amount of weight loss or gain influences the severity of respiratory events in sleep apnea. Med Biol Eng Comput 53, 975–988 (2015). https://doi.org/10.1007/s11517-015-1290-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-015-1290-y

Keywords

Navigation