Skip to main content
Log in

Empirical mode decomposition and neural network for the classification of electroretinographic data

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The processing of biosignals is increasingly being utilized in ambulatory situations in order to extract significant signals’ features that can help in clinical diagnosis. However, this task is hampered by the fact that biomedical signals exhibit a complex behavior characterized by strong nonlinear and non-stationary properties that cannot always be perceived by simple visual examination. New processing methods need be considered. In this context, we propose a signal processing method, based on empirical mode decomposition and artificial neural networks, to analyze electroretinograms, i.e., the retinal response to a light flash, with the aim to detect and classify retinal diseases. The present application focuses on two retinal pathologies: achromatopsia, which is a cone disease, and congenital stationary night blindness, which affects the photoreceptoral signal transmission. The results indicate that, under suitable conditions, the method proposed here has the potential to provide a powerful tool for routine clinical examinations, since it is able to recognize with high level of confidence the eventual presence of one of the two pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abdullayev NT, Ismaylova K (2012) Use of neural networks for recognition of pathological changes in stimulative electromyograms. Biomed Eng 45(6):201–206

    Article  Google Scholar 

  2. Abu Anas EM, Lee SY, Hasan Md K (2011) “Exploiting correlation of ECG with certain EMD functions for discrimination of ventricular fibrillation. Comput Biol Med 41:110–114

    Article  Google Scholar 

  3. Agrafioti F, Hatzinakos D, Anderson AK (2012) ECG pattern analysis for emotion detection. IEEE Trans Affect Comput 3(1):102–115

    Article  Google Scholar 

  4. Ai L, Wang J, Yao R (2011) Classification of Parkinsonian and essential tremor using empirical mode decomposition and support vector machine. Digit Signal Process 21:543–550

    Article  Google Scholar 

  5. Atoui H, Fayn J, Rubel P (2010) A novel neural-network model for deriving standard 12-lead ECGs from serial three-lead ECGs: application to self-care. IEEE Trans Inf Technol B 14(3):883–890

    Article  Google Scholar 

  6. Bagheri A, Li K, Rizzo P (2013) Reference-free damage detection by means of wavelet transform and empirical mode decomposition applied to Lamb waves. J Intell Mater Syst Struct 24(2):194–208

    Article  Google Scholar 

  7. Barni M, Failla P, Lazzeretti R, Sadeghi A, Schneider T (2011) Privacy-preserving ECG classification with branching programs and neural networks. IEEE Trans Inf Forensic Secur 6(2):452–467

    Article  Google Scholar 

  8. Barraco R, Persano Adorno D, Bellomonte L, Brai M (2009) A study of the human rod and cone electroretinogram a-wave component. J Stat Mech Theor Exp 3:P03007

    Google Scholar 

  9. Barraco R, Persano Adorno D, Brai M (2011) ERG signal analysis using wavelet transform. Theor Biosci 130(3):155–163. doi:10.1007/s12064-011-0124-1

    Article  CAS  Google Scholar 

  10. Barraco R, Persano Adorno D, Brai M (2011) An approach based on wavelet analysis for feature extraction in the a-wave of the electroretinogram. Comput Methods Prog Biol 104:316–324. doi:10.1016/j.cmpb.2011.05.001

    Article  CAS  Google Scholar 

  11. Barraco R, Persano Adorno D, Brai M, Tranchina L (2014) A comparison among different techniques for human ERG signals processing and classification. Phys Med 30:86–95. doi:10.1016/j.ejmp.2013.03.006

    Article  CAS  PubMed  Google Scholar 

  12. Bas B, Ozgonenel O, Ozden B, Bekcioglu B, Bulut E, Kurt M (2012) Use of artificial neural network in differentiation of subgroups of temporomandibular internal derangements: a preliminary study. J Oral Maxillofac Surg 70:51–59

    Article  PubMed  Google Scholar 

  13. Birch DG, Hood DC, Locke KG, Hoffman DR, Tzekov RT (2002) Quantitative electroretinogram measures of phototransduction in cone and rod photoreceptors: normal aging, progression with disease, and test-retest variability. Arch Ophthalmol 120(8):1045–1051

    Article  PubMed  Google Scholar 

  14. Boquete L, Miguel-Jiménez JM, Ortega S, Rodríguez-Ascariz JM, Pérez-Rico C, Blanco R (2012) Multifocal electroretinogram diagnosis of glaucoma applying neural networks and structural pattern analysis. Expert Syst Appl 39:234–238

    Article  Google Scholar 

  15. Burns JW, Consens FB, Little RJ, Angell KJ, Gilman S, Chervin RD (2007) EMG variance during Polysomnography as an assessment for REM sleep behaviour disorder. Sleep 30(12):1771–1778

    PubMed Central  PubMed  Google Scholar 

  16. Ceylan R, Ceylan M, Özbay Y, Kara S (2011) Fuzzy clustering complex-valued neural network to diagnose cirrhosis disease. Expert Syst Appl 38:9744–9751

    Article  Google Scholar 

  17. Fulton AB, Hansen RM, Westall CA (2003) Development of ERG responses: the ISCEV rod, maximal and cone responses in normal subjects. Doc Ophthalmol 107(3):235–241

    Article  PubMed  Google Scholar 

  18. Hagan MT, Menhaj M (1994) Training feed-forward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993

    Article  CAS  PubMed  Google Scholar 

  19. Haseena HH, Mathew AT, Paul JK (2011) Fuzzy clustered probabilistic and multi layered feed forward neural networks for electrocardiogram arrhythmia classification. J Med Syst 35:179–188

    Article  PubMed  Google Scholar 

  20. Hood DC, Birch DG (1990) A quantitative measure of the electrical activity of human rod photoreceptors using electroretinography. Vis Neurosci 5:379–387

    Article  CAS  PubMed  Google Scholar 

  21. Hsu WY (2012) Fuzzy Hopfield neural network clustering for single-trial motor imagery EEG classification. Expert Syst Appl 39:1055–1061

    Article  Google Scholar 

  22. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond A 454:903–995

    Article  Google Scholar 

  23. Janušauskas A, Marozas V, Lukoševičius A (2012) Ensemble empirical mode decomposition based feature enhancement of cardio signals. Med Eng Phys 35:1059

    Article  PubMed  Google Scholar 

  24. Karagiannis A, Constantinou P (2011) Noise-assisted data processing with empirical mode decomposition in biomedical signals. IEEE T Inf Technol B 15(1):11–18

    Article  Google Scholar 

  25. Krupa N, Ali M, Zahedi E, Ahmed S, Hassan FM (2011) Antepartum fetal heart rate feature extraction and classification using empirical mode decomposition and support vector machine. BioMed Eng OnLine 10:6

    Article  PubMed Central  PubMed  Google Scholar 

  26. Lee J, McManus DD, Merchant S, Chon KH (2012) Automatic motion and noise artifact detection in holter ECG data using empirical mode decomposition and statistical approaches. IEEE Trans Bio Med Eng 59(6):1499–1506

    Article  Google Scholar 

  27. Liu S, Gao RX, John D, Staudenmayer J, Freedson P (2013) Tissue artifact removal from respiratory signals based on empirical mode decomposition. Ann Biomed Eng. doi:10.1007/s10439-013-0742-5

    PubMed Central  Google Scholar 

  28. Marmor MF, Arden GB, Nilsson SEG, Zrenner E (1989) International standardisation committee, standard for clinical electroretinography. Arch Ophthalmol 107:816–819

    Article  Google Scholar 

  29. Marmor F, Holder GE, Seeliger MW, Yamamoto S (2004) Standard for clinical electroretinography (2004 update). Doc Ophthalmol 108:107–114

    Article  PubMed  Google Scholar 

  30. Md A, Kabir C Shahnaz (2012) Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains. Biomed Signal Process 7(5):481–489

    Article  Google Scholar 

  31. Miguel-Jimenez JM, Ortega S, Boquete L, Rodriguez-Ascariz JM, Blanco R (2011) Multifocal ERG wavelet packet decomposition applied to glaucoma diagnosis. BioMed Eng OnLine 10(1):37

    Article  PubMed Central  PubMed  Google Scholar 

  32. Morillo DS, Gross N (2012) Probabilistic neural network approach for the detection of SAHS from overnight pulse oximetry. Med Biol Eng Comput. doi:10.1007/s11517-012-0995-4

    PubMed  Google Scholar 

  33. Oweis RJ, Abdulhay EW (2011) Seizure classification in EEG signals utilizing Hilbert–Huang transform. BioMed Eng OnLine 10:38

    Article  PubMed Central  PubMed  Google Scholar 

  34. Pachori RB, Bajaj V (2011) Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Comput Methods Prog Biol 104:373–381

    Article  Google Scholar 

  35. Pal S, Mitra M (2010) Detection of ECG characteristic points using multiresolution wavelet analysis based selective coefficient method. Measurement 43:255–261

    Article  Google Scholar 

  36. Pal S, Mitra M (2012) Empirical mode decomposition based ECG enhancement and QRS detection. Comput Biol Med 42:83–92

    Article  PubMed  Google Scholar 

  37. Petrėnas A, Marozas V, Sörnmo L, Lukoševičius A (2012) An echo state neural network for QRST cancellation during atrial fibrillation. IEEE Trans Bio Med Eng 59(10):2950–2957

    Article  Google Scholar 

  38. Pinheiro E, Postolache O, Girão P (2012) Empirical mode decomposition and principal component analysis implementation in processing non-invasive cardiovascular signals. Measurement 45(2):175–181

    Article  Google Scholar 

  39. Rizzo P, Lanza di Scalea F (2006) Wavelet-based feature extraction for automatic defect classification in strands by ultrasonic structural monitoring. Smart Struct Syst 2(3):253–274

    Article  Google Scholar 

  40. Rizzo P, Lanza F, di Scalea F (2007) Wavelet-based unsupervised and supervised learning algorithms for ultrasonic structural monitoring of waveguides, ch 8. In: Reece Peter L (ed) Progress in Smart Materials and Structures Research. NOVA publishers, New York, pp 227–290

    Google Scholar 

  41. Roman AJ, Schwartz S, Aleman TS, Cideciyan AV, Chico JD, Windsor EAM, Gardner LM, Ying G, Smilko EE, Maguire MG, Jacobson SG (2005) Quantifying rod photoreceptor-mediated vision in retinal degenerations: dark-adapted thresholds as outcome measures. Exp Eye Res 80:259–272

    Article  CAS  PubMed  Google Scholar 

  42. Sandmeyer LS, Grahn BH, Breaux CB (2006) Diagnostic ophthalmology. Can Vet J 47:1131–1133

    PubMed Central  PubMed  Google Scholar 

  43. Sidorova MA, Serzhantova NA, Filippova LA (2011) Diagnosis and prognosis of peritonitis outcome using a neural network system for hemostasis parameter examination. Biomed Eng 45(2):72–75

    Article  Google Scholar 

  44. Srhoj-Egekher V, Cifrek M, Medved V (2011) The application of Hilbert-Huang transform in the analysis of muscle fatigue during cyclic dynamic contractions. Med Biol Eng Comput 49:659–669

    Article  PubMed  Google Scholar 

  45. Tsai PH, Lin C, Tsao J, Lin PF, Wang PC, Huang NE, Lo MT (2012) Empirical mode decomposition based detrended sample entropy in electroencephalography for Alzheimer’s disease. J Neurosci Methods 210:230–237

    Article  PubMed  Google Scholar 

  46. Tseng YL, Ko PY, Jaw FS (2012) Detection of the third and fourth heart sounds using Hilbert–Huang transform. BioMed. Eng OnLine 11:8

    Article  PubMed Central  PubMed  Google Scholar 

  47. Uğuz H (2012) A biomedical system based on artificial neural network and principal component analysis for diagnosis of the heart valve diseases. J Med Syst 36:61–72

    Article  PubMed  Google Scholar 

  48. Usui T, Tanimoto N, Ueki S, Takagi M, Hasegawa S, Abe H, Sekiya K, Nakazawa M (2004) ERG rod a-wave in Oguchi disease. Vis Res 44(5):535–540

    Article  PubMed  Google Scholar 

  49. Ye-Lin Y, Garcia-Casado J, Prats-Boluda G, Martinez-de-Juan JL (2010) Combined method for reduction of high frequency interferences in surface electroenterogram (EEnG). Ann Biomed Eng 38(7):2358–2370

    Article  CAS  PubMed  Google Scholar 

  50. Yinhong Z, Quanlu L, Jing W (2012) The study of time-frequency analysis the nocturnal snoring signal based on the wavelet transform. J Acoust Soc Am 131(4):3443

    Article  Google Scholar 

  51. Yuan Q, Zhou W, Zhang J, Li S, Cai D, Zeng Y (2012) EEG classification approach based on the extreme learning machine and wavelet transform. Clin EEG Neurosci 43(2):127–132

    Article  PubMed  Google Scholar 

  52. Zhang X, Zhou P (2012) Filtering of surface EMG using ensemble empirical mode decomposition. Med Eng Phys 35:537–542

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The signal processing utilized in this study was developed as part of a U.S. National Science Foundation grant, award number CMMI 1029457.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Persano Adorno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, A., Persano Adorno, D., Rizzo, P. et al. Empirical mode decomposition and neural network for the classification of electroretinographic data. Med Biol Eng Comput 52, 619–628 (2014). https://doi.org/10.1007/s11517-014-1164-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1164-8

Keywords

Navigation