Skip to main content

Advertisement

Log in

Measurements of steady flow through a bileaflet mechanical heart valve using stereoscopic PIV

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Computational modeling of bileaflet mechanical heart valve (BiMHV) flow requires experimentally validated datasets and improved knowledge of BiMHV fluid mechanics. In this study, flow was studied downstream of a model BiMHV in an axisymmetric aortic sinus using stereoscopic particle image velocimetry. The inlet flow was steady and the Reynolds number based on the aortic diameter was 7600. Results showed the out-of-plane velocity was of similar magnitude as the transverse velocity. Although additional studies are needed for confirmation, analysis of the out-of-plane velocity showed the possible presence of a four-cell streamwise vortex structure in the mean velocity field. Spatial data for all six Reynolds stress components were obtained. Reynolds normal stress profiles revealed similarities between the central jet and free jets. These findings are important to BiMHV flow modeling, though clinical relevance is limited due to the idealized conditions chosen. To this end, the dataset is publicly available for CFD validation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Balducci A, Grigioni M, Querzoli G, Romano GP, Daniele C, D’Avenio G et al (2004) Investigation of the flow field downstream of an artificial heart valve by means of PIV and PTV. Exp Fluids 36(1):204–213

    Article  Google Scholar 

  2. Bell JH, Mehta RD (1988) Contraction design for small low-speed wind tunnels. Technical Report No. 177488 NASA

  3. Borazjani I, Ge L, Sotiropoulos F (2010) High-resolution fluid structure interaction simulations of flow through a bileaflet mechanical heart valve in an anatomic aorta. Ann Biomed Eng 38(2):326–344

    Article  PubMed  Google Scholar 

  4. Brucker C (1997) Dual-camera DPIV for flow studies past artificial heart valves. Exp Fluids 22(6):496–506

    Article  CAS  Google Scholar 

  5. Dasi LP, Ge L, Simon HA, Sotiropoulos F, Yoganathan PA (2007) Vorticity dynamics of a bileaflet mechanical heart valve in an axisymmetric aorta. Phys Fluids 19(6):067105-1–067105-17

    Article  Google Scholar 

  6. De Tullio MD, Cristallo A, Balaras E, Verzicco R (2009) Direct numerical simulation of the pulsatile flow through an aortic bileaflet mechanical heart valve. J Fluid Mech 622:259–290

    Article  Google Scholar 

  7. Dooley P, Quinlan N (2009) Effect of eddy length on mechanical loading of blood cells in turbulent flow. Ann Biomed Eng 37(12):2449–2458

    Article  PubMed  Google Scholar 

  8. Fabris G, Fejer AA (1974) Confined mixing of multiple jets. Trans ASME 96:92–95

    Google Scholar 

  9. Fontaine AA, Ellis JT, Healy TM, Hopmeyer J, Yoganathan AP (1996) Identification of peak stresses in cardiac prostheses: a comparison of two-dimensional versus three-dimensional principal stress analyses. ASAIO J 42(3):154–163

    PubMed  CAS  Google Scholar 

  10. Ge L, Jones SC, Sotiropoulos F, Healy TM, Yoganathan AP (2003) Numerical simulation of flow in mechanical heart valves: grid resolution and the assumption of flow symmetry. J Biomech Eng 125(5):709–718

    Article  PubMed  Google Scholar 

  11. Ge L, Leo H, Sotiropoulos F, Yoganathan AP (2005) Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments. J Biomech Eng 127(5):782–797

    Article  PubMed  Google Scholar 

  12. Ge L, Dasi LP, Sotiropoulos F, Yoganathan AP (2008) Characterization of hemodynamic forces induced by mechanical heart valves: Reynolds vs viscous stresses. Ann Biomed Eng 36(2):276–297

    Article  PubMed  Google Scholar 

  13. Guivier-Curien C, Deplano V, Bertrand E (2009) Validation of a numerical 3D fluid-structure interaction model for a prosthetic valve based on experimental PIV measurements. Med Eng Phys 31:986–993

    Article  PubMed  Google Scholar 

  14. Hanle DD, Harrison EC, Yoganathan AP, Corcoran WH (1988) In vitro fluid dynamics of the St Jude valve prosthesis in steady and pulsatile flow. Eng Med 17(4):181–187

    Article  PubMed  CAS  Google Scholar 

  15. Hutchison C (2009) Stereoscopic PIV in steady flow through a bileaflet mechanical heart valve. M.A.Sc thesis, University of Toronto

  16. Kaminsky R, Kallweit S, Weber H, Claessens T, Jozwik K, Verdonck P (2007) Flow visualization through two types of aortic prosthetic heart valves using stereoscopic high-speed particle image velocimetry. Artif Organs 31(12):869–879

    Article  PubMed  Google Scholar 

  17. Kaminsky R, Kallweit S, Rossi M, Morbiducci U, Scalise L, Verdonck P et al (2008) PIV measurements of flows in artificial heart valves. In: Schroeder A, Willert C (eds) Particle image velocimetry: new developments and recent applications. Springer, Berlin, pp 55–72

    Google Scholar 

  18. Krothapalli A, Baganoff D, Karamcheti K (1981) On the mixing of a rectangular jet. J Fluid Mech 107:201–220

    Article  Google Scholar 

  19. Le H, Moin P, Kim J (1997) Direct numerical simulation of turbulent flow over a backward-facing step. J Fluid Mech 330:349–374

    Article  CAS  Google Scholar 

  20. Li C, Lo C, Lu P (2010) Estimation of viscous dissipative stresses induced by a mechanical heart valve using PIV data. Ann Biomed Eng 38(3):903–916

    Article  PubMed  Google Scholar 

  21. Liu JS, Lu PC, Chu SH (2000) Turbulence characteristics downstream of bileaflet aortic valve prostheses. J Biomech Eng 122(2):118–124

    Article  PubMed  CAS  Google Scholar 

  22. Marassi M, Castellini P, Pinotti M, Scalise L (2004) Cardiac valve prosthesis flow performances measured by 2D and 3D-stereo particle image velocimetry. Exp Fluids 36(1):176–186

    Article  Google Scholar 

  23. Prasad AK (2000) Stereoscopic particle image velocimetry. Exp Fluids 29(2):103–116

    Article  Google Scholar 

  24. Shahbazi K (2007) A parallel high-order discontinuous Galerkin solver for the unsteady incompressible Navier-Stokes equations in complex geometries. PhD thesis, University of Toronto

  25. Sotiropoulos F, Borazjani I (2009) A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves. Med Biol Eng Comput 47:245–256

    Article  PubMed  Google Scholar 

  26. Tennekes H, Lumley JL (1972) A first course in turbulence. MIT Press, Cambridge

    Google Scholar 

  27. Ullum U, Schmidt JJ, Larsen PS, McCluskey DR (1998) Statistical analysis and accuracy of PIV data. J Vis 1(2):205–216

    Article  Google Scholar 

  28. Usera G (1999) Adaptive algorithms for PIV image analyzing. Technical report, Institute of Fluid Mechanics and Environmental Engineering (IMFIA). University of the Republic, Montevideo

    Google Scholar 

  29. Wernet MP, Subramanian A, Mu H, Kadambi JR (2000) Comparison of particle image velocimetry and laser Doppler anemometry measurements in turbulent fluid flow. Ann Biomed Eng 28(11):1393–1394

    Article  PubMed  CAS  Google Scholar 

  30. Willert C (1997) Stereoscopic digital particle image velocimetry for application in wind tunnel flows. Meas Sci Technol 8(12):1465–1479

    Article  Google Scholar 

  31. Yoganathan AP, Chaux A, Gray RJ (1984) Bileaflet, tilting disc and porcine aortic valve substitutes: in vitro hydrodynamic characteristics. J Am Coll Cardiol 3(2 I):313–320

    Article  PubMed  CAS  Google Scholar 

  32. Yoganathan AP, Woo Yi-Ren, Sung Hsing-Wen (1986) Turbulent shear stress measurements in the vicinity of aortic heart valve prostheses. J Biomech 19(6):433–442

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by NSERC (C.R.E., P.S.). C.H. was supported by NSERC PGS-M funding. In addition, the Canada Research Chairs Program (C.R.E.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Hutchison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutchison, C., Sullivan, P. & Ethier, C.R. Measurements of steady flow through a bileaflet mechanical heart valve using stereoscopic PIV. Med Biol Eng Comput 49, 325–335 (2011). https://doi.org/10.1007/s11517-010-0705-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0705-z

Keywords

Navigation