Skip to main content
Log in

Prediction of C-glycosylated apigenin (vitexin) biosynthesis in Ficus deltoidea based on plant proteins identified by LC-MS/MS

  • Research Article
  • Published:
Frontiers in Biology

Abstract

Background

Plant secondary metabolites act as defence molecules to protect plants from biotic and abiotic stresses. In particular, C-glycosylated flavonoids are more stable and reactive than their O-glycosylated counterparts. Therefore, vitexin (apigenin 8-C glucoside) present in Ficus deltoidea is well-known for its antioxidant, anti-inflammatory, and antidiabetic properties.

Methods

Phenol based extraction was used to extract proteins (0.05% yield) with less plant pigments. This can be seen from clear protein bands in gel electrophoresis. In-gel trypsin digestion was subsequently carried out and analysed for the presence of peptides by LC-MS/MS.

Results

Thirteen intact proteins are identified on a 12% polyacrylamide gel. The mass spectra matching was found to have 229 proteins, and 11.4% of these were involved in secondary metabolism. Proteins closely related to vitexin biosynthesis are listed and their functions are explained mechanistically. Vitexin synthesis is predicted to involve plant polyketide chalcone synthase, isomerization by chalcone isomerase, oxidation by cytochrome P450 to convert flavanone to flavone, and transfer of sugar moiety by C-glycosyltransferase, followed by dehydration to produce flavone-8-C-glucosides.

Conclusions

Phenol based extraction, followed by gel electrophoresis and LC-MS/MS could identify proteome explaining vitexin biosynthesis in F. deltoidea. Many transferases including β-1,3-galactosyltransferase 2 and glycosyl hydrolase family 10 protein were detected in this study. This explains the importance of transferase family proteins in Cglycosylated apigenin biosynthesis in medicinal plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam Z, Khamis S, Ismail A, Hamid M (2012). Ficus deltoidea: A potential alternative medicine for diabetes mellitus. Evid Based Complement Alternat Med, 2012: 632763

    Article  PubMed  PubMed Central  Google Scholar 

  • Afrin S, Huang J J, Luo Z Y (2015). JA-mediated transcriptional regulation of secondary metabolism in medicinal plants. Sci Bull, 60 (12): 1062–1072

    Article  CAS  Google Scholar 

  • Akashi T, Aoki T, Ayabe S (2005). Molecular and biochemical characterization of 2-hydroxyisoflavanone dehydratase. Involvement of carboxylesterase-like proteins in leguminous isoflavone biosynthesis. Plant Physiol, 137(3): 882–891

    CAS  PubMed  Google Scholar 

  • Akashi T, Fukuchi-Mizutani M, Aoki T, Ueyama Y, Yonekura-Sakakibara K, Tanaka Y, Kusumi T, Ayabe S (1999). Molecular cloning and biochemical characterization of a novel cytochrome P450, flavone synthase II, that catalyzes direct conversion of flavanones to flavones. Plant Cell Physiol, 40(11): 1182–1186

    Article  CAS  PubMed  Google Scholar 

  • Akey D L, Razelun J R, Tehranisa J, Sherman D H, Gerwick WH, Smith J L (2010). Crystal structures of dehydratase domains from the curacin polyketide biosynthetic pathway. Structure, 18(1): 94–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alejandro S, Lee Y, Tohge T, Sudre D, Osorio S, Park J, Bovet L, Lee Y, Geldner N, Fernie A R, Martinoia E (2012). AtABCG29 is a monolignol transporter involved in lignin biosynthesis. Curr Biol, 22 (13): 1207–1212

    Article  CAS  PubMed  Google Scholar 

  • Austin MB, Noel J P (2003). The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep, 20(1): 79–110

    Article  CAS  PubMed  Google Scholar 

  • Azemin A, Dharmaraj S, Hamdan M R, Mat N, Ismail Z, Khamsah S M (2014). Discriminating Ficus deltoidea var. bornensis from Different Localities by HPTLC and FTIR Fingerprinting. J Appl Pharm Sci, 4: 69–75

    Google Scholar 

  • Bak S, Beisson F, Bishop G, Hamberger B, Höfer R, Paquette S (2011). Cytochromes P450. Arab B, e0144

    Google Scholar 

  • Bednar R A, Hadcock J R (1988). Purification and characterization of chalcone isomerase from soybeans. J Biol Chem, 263(20): 9582–9588

    CAS  PubMed  Google Scholar 

  • Bernhoft A, Siem H, Bjertness E, Meltzer M, Flaten T, Holmsen E (2010). Bioactive compounds in plants–benefits and risks for man and animals. in Proceedings from a Symposium Held at The Norwegian Academy of Science and Letters, Novus forlag, Oslo Bradford M M (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding. Anal Biochem, 72(1-2): 248–254

    Google Scholar 

  • Brazier-Hicks M, Edwards R (2013). Metabolic engineering of the flavone-C-glycoside pathway using polyprotein technology. Metab Eng, 16: 11–20

    Article  CAS  PubMed  Google Scholar 

  • Brazier-Hicks M, Evans K M, Cunningham O D, Hodgson D R W, Steel P G, Edwards R (2008). Catabolism of glutathione conjugates in Arabidopsis thaliana. Role in metabolic reactivation of the herbicide safener fenclorim. J Biol Chem, 283(30): 21102–21112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brazier-Hicks M, Evans K M, Gershater M C, Puschmann H, Steel P G, Edwards R (2009). The C-glycosylation of flavonoids in cereals. J Biol Chem, 284(27): 17926–17934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bungaruang L, Gutmann A, Nidetzky B (2013). Leloir glycosyltransferases and natural product glycosylation: Biocatalytic synthesis of the C-glucoside nothofagin, a major antioxidant of redbush herbal tea. Adv Synth Catal, 355(14-15): 2757–2763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng H, Li L, Cheng S, Cao F, Wang Y, Yuan H (2011). Molecular cloning and function assay of a chalcone isomerase gene (GbCHI) from Ginkgo biloba. Plant Cell Rep, 30(1): 49–62

    Article  CAS  PubMed  Google Scholar 

  • Choo C Y, Sulong N Y, Man F, Wong T W (2012). Vitexin and isovitexin from the Leaves of Ficus deltoidea with in-vivo α- glucosidase inhibition. J Ethnopharmacol, 142(3): 776–781

    Article  CAS  PubMed  Google Scholar 

  • Courts F L, Williamson G (2015). Critical Reviews in Food Science and Nutrition The occurrence, fate and biological activities of C- glycosyl flavonoids in the human diet. Crit Rev Food Sci Nutr, 55(10): 1352–1367

    Article  CAS  PubMed  Google Scholar 

  • Crosby K C, Pietraszewska-Bogiel A, Gadella T W J Jr, Winkel B S J (2011). Förster resonance energy transfer demonstrates a flavonoid metabolon in living plant cells that displays competitive interactions between enzymes. FEBS Lett, 585(14): 2193–2198

    Article  CAS  PubMed  Google Scholar 

  • Crozier A, Jaganath I B, Clifford M N (2009). Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep, 26(8): 1001–1043

    Article  CAS  PubMed  Google Scholar 

  • Day A J, Gee J M, DuPont M S, Johnson I T, Williamson G (2003). Absorption of quercetin-3-glucoside and quercetin-4′-glucoside in the rat small intestine: the role of lactase phlorizin hydrolase and the sodium-dependent glucose transporter. Biochem Pharmacol, 65(7): 1199–1206

    Article  CAS  PubMed  Google Scholar 

  • Dey S, Corina Vlot A (2015). Ethylene responsive factors in the orchestration of stress responses in monocotyledonous plants. Front Plant Sci, 6: 640

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixon D P, Hawkins T, Hussey P J, Edwards R (2009). Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily. J Exp Bot, 60(4): 1207–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Y, Chu H, Chu I K, Lo C (2010a). CYP93G2 is a flavanone 2-hydroxylase required for C-glycosyl-flavone biosynthesis in rice. Plant Physiol, 154(1):324–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Y, Chu H, Wang M, Chu I K, Lo C (2010b). Identification of flavone phytoalexins and a pathogen-inducible flavone synthase II gene (SbFNSII) in sorghum. J Exp Bot, 61(4): 983–994

    Article  CAS  PubMed  Google Scholar 

  • Dürr C, Hoffmeister D, Wohlert S E, Ichinose K, Weber M, Von Mulert U, Thorson J S, Bechthold A (2004). The glycosyltransferase UrdGT2 catalyzes both C- and O-glycosidic sugar transfers. Angew Chem Int Ed Engl, 43(22): 2962–2965

    Article  PubMed  Google Scholar 

  • Dzolin S, Ahmad R, Zain M M, Ismail M I (2015). Flavonoid distribution in four varieties of Ficus deltoidea (Jack). J Med Plant Herb Ther Res, 3: 1–9

    Google Scholar 

  • El Amrani A, Barakate A, Askari B M, Li X, Roberts A G, Ryan M D, Halpin C (2004). Coordinate expression and independent subcellular targeting of multiple proteins from a single transgene. Plant Physiol, 135(1): 16–24

    Article  PubMed  PubMed Central  Google Scholar 

  • Falcone Ferreyra M L, Rodriguez E, Casas M I, Labadie G, Grotewold E, Casati P (2013). Identification of a bifunctional maize C- and Oglucosyltransferase. J Biol Chem, 288(44): 31678–31688

    Article  PubMed  PubMed Central  Google Scholar 

  • Farsi E, Shafaei A, Hor S Y, Ahamed MB K, Fei M, Attitalla I H (2011). Correlation between enzymes inhibitory effects and antioxidant activities of standardized fractions of methanolic extract obtained from Ficus deltoidea leaves. Afr J Biotechnol, 10(67): 15184–15194

    Article  CAS  Google Scholar 

  • François I E J A, Van Hemelrijck W, Aerts AM, Wouters P F J, Proost P, Broekaert W F, Cammue B P A (2004). Processing in Arabidopsis thaliana of a heterologous polyprotein resulting in differential targeting of the individual plant defensins. Plant Sci, 166(1): 113–121

    Article  Google Scholar 

  • Ha S H, Liang Y S, Jung H, Ahn M J, Suh S C, Kweon S J, Kim D H, Kim Y M, Kim J K (2010). Application of two bicistronic systems involving 2A and IRES sequences to the biosynthesis of carotenoids in rice endosperm. Plant Biotechnol J, 8(8): 928–938

    Article  CAS  PubMed  Google Scholar 

  • Hakamatsuka T, Mori K, Ishida S, Ebizuka Y, Sankawa U (1998). Purification of 2-hydroxyisoflavanone dehydratase from the Cell Cultures of Pueraria lobata. Phytochemistry, 49(2): 497–505

    Article  CAS  Google Scholar 

  • Halpin C, Cooke S E, Barakate A, El Amrani A, Ryan M D (1999). Selfprocessing 2A-polyproteins–a system for co-ordinate expression of multiple proteins in transgenic plants. Plant J, 17(4): 453–459

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa K, Cowan A B, Nakatsuji N, Suemori H (2007). Efficient multicistronic expression of a transgene in human embryonic stem cells. Stem Cells, 25(7): 1707–1712

    Article  CAS  PubMed  Google Scholar 

  • He M, Min JW, Kong WL, He X H, Li J X, Peng BW (2016). A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia, 115: 74–85

    Article  CAS  PubMed  Google Scholar 

  • Hicks M A, Barber A E 2nd, Giddings L A, Caldwell J, O’Connor S E, Babbitt P C (2011). The evolution of function in strictosidine synthase-like proteins. Proteins, 79(11): 3082–3098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isaacson T, Damasceno C M B, Saravanan R S, He Y, Catalá C, Saladié M, Rose J K (2006). Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protoc, 1(2): 769–774

    Article  CAS  PubMed  Google Scholar 

  • Ishihara A, Ogura Y, Tebayashi S, Iwamura H (2002). Jasmonate-induced changes in flavonoid metabolism in barley (Hordeum vulgare) leaves. Biosci Biotechnol Biochem, 66(10): 2176–2182

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa F, Haushalter R W, Burkart M D (2012). Dehydratase-specific probes for fatty acid and polyketide synthases. J Am Chem Soc, 134 (2): 769–772

    Article  CAS  PubMed  Google Scholar 

  • Jiménez C R, Huang L, Qiu Y, Burlingame A L (2001). Searching sequence databases over the internet: protein identification using MSFit. Curr Protoc Protein Sci, Chapter 16: 5

    Google Scholar 

  • Kaltenbach M, Schröder G, Schmelzer E, Lutz V, Schröder J (1999). Flavonoid hydroxylase from Catharanthus roseus: cDNA, heterologous expression, enzyme properties and cell-type specific expression in plants. Plant J, 19(2): 183–193

    Article  CAS  PubMed  Google Scholar 

  • Kašparová M, Siatka T (2014). Production of flavonoids and isoflavonoids in jasmonic acid-induced red clover suspension cultures. Ceska Slov Farm, 63(1): 17–21

    PubMed  Google Scholar 

  • Kerscher F, Franz G (1987). Biosynthesis of Vitexin and Isovitexin: Enzymatic Synthesis of the C-Glucosylflavones Vitexin and Isovitexin with an Enzyme Preparation from Fagopyrum esculentum M. Seedlings. Z Naturforsch C, 42: 519–524

    CAS  Google Scholar 

  • Kramell R, Miersch O, Atzorn R, Parthier B, Wasternack C (2000). Octadecanoid-derived alteration of gene expression and the “oxylipin signature” in stressed barley leaves. Implications for different signaling pathways. Plant Physiol, 123(1): 177–188

    CAS  PubMed  Google Scholar 

  • Laemmli U K (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259): 680–685

    Article  CAS  PubMed  Google Scholar 

  • Le Roy J, Huss B, Creach A, Hawkins S, Neutelings G (2016). Glycosylation Is a Major Regulator of Phenylpropanoid Availability and Biological Activity in Plants. Front Plant Sci, 7: 735

    PubMed  PubMed Central  Google Scholar 

  • Li Y, Dodge G J, Fiers W D, Fecik R A, Smith J L, Aldrich C C (2015). Functional Characterization of a Dehydratase Domain from the Pikromycin Polyketide Synthase. J Am Chem Soc, 137(22): 7003–7006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luley-Goedl C, Nidetzky B (2011). Glycosides as compatible solutes: biosynthesis and applications. Nat Prod Rep, 28(5): 875–896

    Article  CAS  PubMed  Google Scholar 

  • Lussier F X, Colatriano D, Wiltshire Z, Page J E, Martin V J J (2013). Engineering microbes for plant polyketide biosynthesis. Comput Struct Biotechnol J, 3(4): e201210020

    Article  PubMed  PubMed Central  Google Scholar 

  • Martens S, Mithöfer A (2005). Flavones and flavone synthases. Phytochemistry, 66(20): 2399–2407

    Article  CAS  PubMed  Google Scholar 

  • Mierziak J, Kostyn K, Kulma A (2014). Flavonoids as important molecules of plant interactions with the environment. Molecules, 19 (10): 16240–16265

    Article  PubMed  Google Scholar 

  • Misbah H, Aziz A A, Aminudin N (2013). Antidiabetic and antioxidant properties of Ficus deltoidea fruit extracts and fractions. BMC Complement Altern Med, 13(1): 118

    Article  PubMed  PubMed Central  Google Scholar 

  • Mizutani M, Sato F (2011). Unusual P450 reactions in plant secondary metabolism. Arch Biochem Biophys, 507(1): 194–203

    Article  CAS  PubMed  Google Scholar 

  • Mohd K S, Rosli A S, Azemin A, Mat N, Zakaria A J (2016). Comprehensive Biological Activities Evaluation and Quantification of Marker Compounds of Ficus deltoiea Jack Varieties. Int J Pharmacogn Phytochem Res, 8: 1698–1708

    Google Scholar 

  • Morant M, Bak S, Møller B L, Werck-Reichhart D (2003). Plant cytochromes P450: tools for pharmacology, plant protection and phytoremediation. Curr Opin Biotechnol, 14(2): 151–162

    Article  CAS  PubMed  Google Scholar 

  • Nagatomo Y, Usui S, Ito T, Kato A, Shimosaka M, Taguchi G (2014). Purification, molecular cloning and functional characterization of flavonoid C-glucosyltransferases from Fagopyrum esculentum M. (buckwheat) cotyledon. Plant J, 80(3): 437–448

    Article  CAS  PubMed  Google Scholar 

  • Pauwels L, Inzé D, Goossens A (2009). Jasmonate-inducible gene: What does it mean? Trends Plant Sci, 14(2): 87–91

    Article  CAS  PubMed  Google Scholar 

  • Praveena R, Sadasivam K, Kumaresan R, Deepha V, Sivakumar R (2013). Experimental and DFT studies on the antioxidant activity of a C-glycoside from Rhynchosia capitata. Spectrochim Acta A Mol Biomol Spectrosc, 103: 442–452

    Article  CAS  PubMed  Google Scholar 

  • Rawat P, Kumar M, Sharan K, Chattopadhyay N, Maurya R (2009). Ulmosides A and B: flavonoid 6-C-glycosides from Ulmus wallichiana, stimulating osteoblast differentiation assessed by alkaline phosphatase. Bioorg Med Chem Lett, 19(16): 4684–4687

    Article  CAS  PubMed  Google Scholar 

  • Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, Tohge T, Fernie A R (2013). The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiol Biochem, 72: 21–34

    Article  CAS  PubMed  Google Scholar 

  • Schaller F (2001). Enzymes of the biosynthesis of octadecanoid-derived signalling molecules. J Exp Bot, 52(354): 11–23

    Article  CAS  PubMed  Google Scholar 

  • Shafaei A, Farsi E, Ismail Z, Asmawi M Z (2012). Quantitative High Performance Thin-Layer Chromatography Method for Analysis of Vitexin and Isovitexin in Extracts of Leaves of Ficus deltoidea. Asian J Chem, 24: 2286

    Google Scholar 

  • Shevchenko A, Tomas H, Havlis J, Olsen J V, Mann M (2006). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc, 1(6): 2856–2860

    Article  CAS  PubMed  Google Scholar 

  • Stafford H A (1991). Flavonoid evolution: an enzymic approach. Plant Physiol, 96(3): 680–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • University of California (2017). Ms-Fit. Available at: http://prospector. ucsf.edu/prospector/cgi-bin/msform.cgi?form = msfitstandard.

    Google Scholar 

  • Väisänen E E, Smeds A I, Fagerstedt K V, Teeri T H, Willför S M, Kärkönen A (2015). Coniferyl alcohol hinders the growth of tobacco BY-2 cells and Nicotiana benthamiana seedlings. Planta, 242(3): 747–760

    Article  PubMed  Google Scholar 

  • Wu J, Zaleski T J, Valenzano C, Khosla C, Cane D E (2005). Polyketide double bond biosynthesis. Mechanistic analysis of the dehydratasecontaining module 2 of the picromycin/methymycin polyketide synthase. J Am Chem Soc, 127(49): 17393–17404

    CAS  Google Scholar 

  • Xiao J, Capanoglu E, Jassbi A R, Miron A (2016). Advance on the flavonoid C-glycosides and health benefits. Crit Rev Food Sci Nutr, 56(sup1 Suppl 1): S29–S45

    Article  CAS  PubMed  Google Scholar 

  • Xiao J, Chen T, Cao H (2015). Flavonoid glycosylation and biological benefits. Biotechnol Adv

    Google Scholar 

  • Xu F, Li L, Zhang W, Cheng H, Sun N, Cheng S, Wang Y (2012). Isolation, characterization, and function analysis of a flavonol synthase gene from Ginkgo biloba. Mol Biol Rep, 39(3): 2285–2296

    Article  CAS  PubMed  Google Scholar 

  • Yang C Q, Fang X, Wu X M, Mao Y B, Wang L J, Chen X Y (2012). Transcriptional regulation of plant secondary metabolism. J Integr Plant Biol, 54(10): 703–712

    Article  CAS  PubMed  Google Scholar 

  • Yonekura-Sakakibara K, Hanada K (2011). An evolutionary view of functional diversity in family 1 glycosyltransferases. Plant J, 66(1): 182–193

    Article  CAS  PubMed  Google Scholar 

  • Yonekura-Sakakibara K, Tohge T, Matsuda F, Nakabayashi R, Takayama H, Niida R, Watanabe-Takahashi A, Inoue E, Saito K (2008). Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis. Plant Cell, 20(8): 2160–2176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai R, Wang Z, Zhang S, Meng G, Song L, Wang Z, Li P, Ma F, Xu L (2016). Two MYB transcription factors regulate flavonoid biosynthesis in pear fruit (Pyrus bretschneideri Rehd.). J Exp Bot, 67(5): 1275–1284

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Abrahan C, Colquhoun T A, Liu C and Sciences A (2017). A proteolytic regulator controlling chalcone synthase stability and flavonoid biosynthesis in Arabidopsis. Plant Cell Online, tpc-00855

    Google Scholar 

  • Zhao J, Davis L C, Verpoorte R (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv, 23(4): 283–333

    Article  CAS  PubMed  Google Scholar 

  • Zunoliza A, Khalid H, Zhari I, Rasadah M A (2009). Anti-inflammatory activity of standardised extracts of leaves of three varieties of Ficus deltoidea. Int J Pharm Clin Res, 1: 100–105

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Higher Education for their financial support under the HiCoE grant (4J263) to carry out this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Suan Chua.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, F.I., Chua, L.S. & Rahmat, Z. Prediction of C-glycosylated apigenin (vitexin) biosynthesis in Ficus deltoidea based on plant proteins identified by LC-MS/MS. Front. Biol. 12, 448–458 (2017). https://doi.org/10.1007/s11515-017-1472-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-017-1472-0

Keywords

Navigation