Skip to main content
Log in

Putting it all together: intrinsic and extrinsic mechanisms governing proteasome biogenesis

  • Review
  • Published:
Frontiers in Biology

Abstract

Background

The 26S proteasome is at the heart of the ubiquitin-proteasome system, which is the key cellular pathway for the regulated degradation of proteins and enforcement of protein quality control. The 26S proteasome is an unusually large and complicated protease comprising a 28-subunit core particle (CP) capped by one or two 19-subunit regulatory particles (RP). Multiple activities within the RP process incoming ubiquitinated substrates for eventual degradation by the barrel-shaped CP. The large size and elaborate architecture of the proteasome have made it an exceptional model for understanding mechanistic themes in macromolecular assembly.

Objective

In the present work, we highlight the most recent mechanistic insights into proteasome assembly, with particular emphasis on intrinsic and extrinsic factors regulating proteasome biogenesis. We also describe new and exciting questions arising about how proteasome assembly is regulated and deregulated in normal and diseased cells.

Methods

A comprehensive literature search using the PubMed search engine was performed, and key findings yielding mechanistic insight into proteasome assembly were included in this review.

Results

Key recent studies have revealed that proteasome biogenesis is dependent upon intrinsic features of the subunits themselves as well as extrinsic factors, many of which function as dedicated chaperones.

Conclusion

Cells rely on a diverse set of mechanistic strategies to ensure the rapid, efficient, and faithful assembly of proteasomes from their cognate subunits. Importantly, physiological as well as pathological changes to proteasome assembly are emerging as exciting paradigms to alter protein degradation in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal A K, Xing C, De Martino G N, Mizrachi D, Hernandez M D, Sousa A B, Martínez de Villarreal L, dos Santos H G, Garg A (2010). PSMB8 encoding the beta5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitisinduced lipodystrophy syndrome. Am J Hum Genet, 87(6): 866–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akahane T, Sahara K, Yashiroda H, Tanaka K, Murata S (2013). Involvement of Bag6 and the TRC pathway in proteasome assembly. Nat Commun, 4: 2234

    Article  PubMed  CAS  Google Scholar 

  • Arendt C S, Hochstrasser M (1997). Identification of the yeast 20S proteasome catalytic centers and subunit interactions required for active-site formation. Proc Natl Acad Sci USA, 94(14): 7156–7161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arendt C S, Hochstrasser M (1999). Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by Nterminal acetylation and promote particle assembly. EMBO J, 18(13): 3575–3585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arima K, Kinoshita A, Mishima H, Kanazawa N, Kaneko T, Mizushima T, Ichinose K, Nakamura H, Tsujino A, Kawakami A, Matsunaka M, Kasagi S, Kawano S, Kumagai S, Ohmura K, Mimori T, Hirano M, Ueno S, Tanaka K, Tanaka M, Toyoshima I, Sugino H, Yamakawa A, Tanaka K, Niikawa N, Furukawa F, Murata S, Eguchi K, Ida H, Yoshiura K (2011). Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. Proc Natl Acad Sci USA, 108(36): 14914–14919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asano S, Fukuda Y, Beck F, Aufderheide A, Forster F, Danev R, Baumeister W (2015). Proteasomes. A molecular census of 26S proteasomes in intact neurons. Science, 347(6220): 439–442

    CAS  PubMed  Google Scholar 

  • Aufderheide A, Beck F, Stengel F, Hartwig M, Schweitzer A, Pfeifer G, Goldberg A L, Sakata E, Baumeister W, Förster F (2015). Structural characterization of the interaction of Ubp6 with the 26S proteasome. Proc Natl Acad Sci USA, 112(28): 8626–8631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bader M, Benjamin S, Wapinski O L, Smith D M, Goldberg A L, Steller H (2011). A conserved f box regulatory complex controls proteasome activity in Drosophila. Cell, 145(3): 371–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai M, Zhao X, Sahara K, Ohte Y, Hirano Y, Kaneko T, Yashiroda H, Murata S (2014). Assembly mechanisms of specialized core particles of the proteasome. Biomolecules, 4(3): 662–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrault M B, Richet N, Godard C, Murciano B, Le Tallec B, Rousseau E, Legrand P, Charbonnier J B, Le Du M H, Guerois R, Ochsenbein F, Peyroche A (2012). Dual functions of the Hsm3 protein in chaperoning and scaffolding regulatory particle subunits during the proteasome assembly. Proc Natl Acad Sci USA, 109(17): E1001–E1010

    Google Scholar 

  • Barthelme D, Chen J Z, Grabenstatter J, Baker T A, Sauer R T (2014). Architecture and assembly of the archaeal Cdc48 20S proteasome. Proc Natl Acad Sci USA, 111(17): E1687–E1694

    Google Scholar 

  • Barthelme D, Jauregui R, Sauer RT (2015). An ALS disease mutation in Cdc48/p97 impairs 20S proteasome binding and proteolytic communication. Protein Sci, 24:1521–1527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barthelme D, Sauer R T (2012a). Identification of the Cdc48 20S proteasome as an ancient AAA + proteolytic machine. Science, 337(6096): 843–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barthelme D, Sauer RT (2012b). Identification of the Cdc48 20S proteasome as an ancient AAA + proteolytic machine. Science, 337(6096): 843–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barthelme D, Sauer R T (2013). Bipartite determinants mediate an evolutionarily conserved interaction between Cdc48 and the 20S peptidase. Proc Natl Acad Sci USA, 110(9): 3327–3332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bashore C, Dambacher CM, Goodall E A, Matyskiela ME, Lander G C, Martin A (2015). Ubp6 deubiquitinase controls conformational dynamics and substrate degradation of the 26S proteasome. Nat Struct Mol Biol, 22(9): 712–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basler M, Kirk C J, Groettrup M (2013). The immunoproteasome in antigen processing and other immunological functions. Curr Opin Immunol, 25(1): 74–80

    Article  CAS  PubMed  Google Scholar 

  • Beck F, Unverdorben P, Bohn S, Schweitzer A, Pfeifer G, Sakata E, Nickell S, Plitzko J M, Villa E, Baumeister W, Forster F (2012). Near-atomic resolution structural model of the yeast 26S proteasome. Proc Natl Acad Sci USA, 109(37): 14870–14875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckwith R, Estrin E, Worden E J, Martin A (2013). Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA + unfoldase. Nat Struct Mol Biol, 20(10): 1164–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benaroudj N, Goldberg A L (2000). PAN, the proteasome-activating nucleotidase from archaebacteria, is a protein-unfolding molecular chaperone. Nat Cell Biol, 2(11): 833–839

    Article  CAS  PubMed  Google Scholar 

  • Braun B C, Glickman M, Kraft R, Dahlmann B, Kloetzel P M, Finley D, Schmidt M (1999). The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat Cell Biol, 1(4): 221–226

    Article  CAS  PubMed  Google Scholar 

  • Burri L, Hockendorff J, Boehm U, Klamp T, Dohmen R J, Levy F (2000). Identification and characterization of a mammalian protein interacting with 20S proteasome precursors. Proc Natl Acad Sci USA, 97(19): 10348–10353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cascio P (2014). PA28alphabeta: the enigmatic magic ring of the proteasome? Biomolecules, 4(2): 566–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen P, Hochstrasser M (1996). Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell, 86(6): 961–972

    Article  CAS  PubMed  Google Scholar 

  • Chu-Ping M, Slaughter C A, De Martino G N (1992). Purification and characterization of a protein inhibitor of the 20S proteasome (macropain). Biochim Biophys Acta, 1119(3): 303–311

    Article  CAS  PubMed  Google Scholar 

  • Cohen-Kaplan V, Livneh I, Avni N, Fabre B, Ziv T, Kwon Y T, Ciechanover A (2016). p62- and ubiquitin-dependent stress-induced autophagy of the mammalian 26S proteasome. Proc Natl Acad Sci USA, 113(47): E7490–E7499

    Article  CAS  PubMed  Google Scholar 

  • Colot H V, Park G, Turner G E, Ringelberg C, Crew C M, Litvinkova L, Weiss R L, Borkovich K A, Dunlap J C (2006). A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci USA, 103(27): 10352–10357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Fonseca P C, He J, Morris E P (2012). Molecular Model of the Human 26S Proteasome. Mol Cell, 46(1): 54–66

    Article  CAS  PubMed  Google Scholar 

  • Dahlqvist J, Klar J, Tiwari N, Schuster J, Törmä H, Badhai J, Pujol R, van Steensel M A M, Brinkhuizen T, Gijezen L, Chaves A, Tadini G, Vahlquist A, Dahl N (2010). A single-nucleotide deletion in the POMP 5' UTR causes a transcriptional switch and altered epidermal proteasome distribution in KLICK genodermatosis. Am J Hum Genet, 86(4): 596–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dambacher C M, Worden E J, Herzik M A, Martin A, Lander G C (2016). Atomic structure of the 26S proteasome lid reveals the mechanism of deubiquitinase inhibition. eLife, 5: e13027

    Article  PubMed  PubMed Central  Google Scholar 

  • Dange T, Smith D, Noy T, Rommel P C, Jurzitza L, Cordero R J B, Legendre A, Finley D, Goldberg A L, Schmidt M (2011). Blm10 protein promotes proteasomal substrate turnover by an active gating mechanism. J Biol Chem, 286(50): 42830–42839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De M, Jayarapu K, Elenich L, Monaco J J, Colbert R A, Griffin T A (2003). Beta 2 subunit propeptides influence cooperative proteasome assembly. J Biol Chem, 278(8): 6153–6159

    Article  CAS  PubMed  Google Scholar 

  • De La Mota-Peynado A, Lee S Y, Pierce B M, Wani P, Singh C R, Roelofs J (2013). The proteasome-associated protein Ecm29 inhibits proteasomal ATPase activity and in vivo protein degradation by the proteasome. J Biol Chem, 288(41): 29467–29481

    Article  CAS  Google Scholar 

  • De Martino G N, Proske R J, Moomaw C R, Strong A A, Song X, Hisamatsu H, Tanaka K, Slaughter C A (1996). Identification, purification, and characterization of a PA700-dependent activator of the proteasome. J Biol Chem, 271(6): 3112–3118

    Article  Google Scholar 

  • Ding W X, Ni H M, Gao W, Yoshimori T, Stolz D B, Ron D, Yin X M (2007). Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol, 171(2): 513–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Driscoll J, Brown M G, Finley D, Monaco J J (1993). MHC-linked LMP gene products specifically alter peptidase activities of the proteasome. Nature, 365(6443): 262–264

    Article  CAS  PubMed  Google Scholar 

  • Enenkel C, Lehmann A, Kloetzel PM (1998). Subcellular distribution of proteasomes implicates a major location of protein degradation in the nuclear envelope-ER network in yeast. EMBO J, 17(21): 6144–6154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estrin E, Lopez-Blanco J R, Chacon P, Martin A (2013). Formation of an Intricate Helical Bundle Dictates the Assembly of the 26S Proteasome Lid. Structure, 21(9): 1624–1635

    Article  CAS  PubMed  Google Scholar 

  • Fehlker M, Wendler P, Lehmann A, Enenkel C (2003). Blm3 is part of nascent proteasomes and is involved in a late stage of nuclear proteasome assembly. EMBO Rep, 4(10): 959–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finley D (2009). Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem, 78(1): 477–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forouzan D, Ammelburg M, Hobel C F, Stroh L J, Sessler N, Martin J, Lupas A N (2012). The archaeal proteasome is regulated by a network of AAA ATPases. J Biol Chem, 287(46): 39254–39262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forster A, Masters E I, Whitby F G, Robinson H, Hill C P (2005). The 1.9 A structure of a proteasome-11S activator complex and implications for proteasome-PAN/PA700 interactions. Mol Cell, 18(5): 589–599

    Article  PubMed  CAS  Google Scholar 

  • Fort P, Kajava A V, Delsuc F, Coux O (2015). Evolution of proteasome regulators in eukaryotes. Genome Biol Evol, 7(5): 1363–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frentzel S, Pesold-Hurt B, Seelig A, Kloetzel P M (1994). 20 S proteasomes are assembled via distinct precursor complexes. Processing of LMP2 and LMP7 proproteins takes place in 13–16 S preproteasome complexes. J Mol Biol, 236(4): 975–981

    CAS  PubMed  Google Scholar 

  • Fricke B, Heink S, Steffen J, Kloetzel P M, Kruger E (2007). The proteasome maturation protein POMP facilitates major steps of 20S proteasome formation at the endoplasmic reticulum. EMBO Rep, 8(12): 1170–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukunaga K, Kudo T, Toh-e A, Tanaka K, Saeki Y (2010). Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae. Biochem Biophys Res Commun, 396(4): 1048–1053

    Article  CAS  PubMed  Google Scholar 

  • Funakoshi M, Tomko R J, Kobayashi H, Hochstrasser M (2009). Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base. Cell, 137(5): 887–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaczynska M, Rock K L, Goldberg A L (1993). Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature, 365(6443): 264–267

    Article  CAS  PubMed  Google Scholar 

  • Gerards W L, Enzlin J, Häner M, Hendriks ILA M, Aebi U, Bloemendal H, Boelens W (1997). The human alpha-type proteasomal subunit HsC8 forms a double ringlike structure, but does not assemble into proteasome-like particles with the beta-type subunits HsDelta or HsBPROS26. J Biol Chem, 272(15): 10080–10086

    Article  CAS  PubMed  Google Scholar 

  • Gerards W L, de Jong W W, Bloemendal H, Boelens W (1998). The human proteasomal subunit HsC8 induces ring formation of other alpha-type subunits. J Mol Biol, 275(1): 113–121

    Article  CAS  PubMed  Google Scholar 

  • Ghaemmaghami S, Huh W K, Bower K, Howson R W, Belle A, Dephoure N, O’Shea E K, Weissman J S (2003). Global analysis of protein expression in yeast. Nature, 425(6959): 737–741

    Article  CAS  PubMed  Google Scholar 

  • Gille C, Goede A, Schlöetelburg C, Preißner R, Kloetzel P M, Göbel U B, Frömmel C (2003). A comprehensive view on proteasomal sequences: implications for the evolution of the proteasome. J Mol Biol, 326(5): 1437–1448

    Article  CAS  PubMed  Google Scholar 

  • Gillette T G, Kumar B, Thompson D, Slaughter C A, De Martino G N (2008). Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome. J Biol Chem, 283(46): 31813–31822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes A V (2013). Genetics of proteasome diseases. Scientifica (Cairo), 2013: 637629

    Google Scholar 

  • Gragnoli C, Cronsell J (2007). PSMD9 gene variants within NIDDM2 may rarely contribute to type 2 diabetes. J Cell Physiol, 212(3): 568–571

    Article  CAS  PubMed  Google Scholar 

  • Griffin T A, Nandi D, Cruz M, Fehling H J, Kaer L V, Monaco J J, Colbert R A (1998). Immunoproteasome assembly: cooperative incorporation of interferon gamma (IFN-gamma)-inducible subunits. J Exp Med, 187(1): 97–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin T A, Slack J P, McCluskey T S, Monaco J J, Colbert R A (2000). Identification of proteassemblin, a mammalian homologue of the yeast protein, Ump1p, that is required for normal proteasome assembly. Mol Cell Biol Res Commun, 3(4): 212–217

    Article  CAS  PubMed  Google Scholar 

  • Groettrup M, Standera S, Stohwasser R, Kloetzel P M (1997). The subunits MECL-1 and LMP2 are mutually required for incorporation into the 20S proteasome. Proc Natl Acad Sci USA, 94(17): 8970–8975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groll M, Brandstetter H, Bartunik H, Bourenkow G, Huber R (2003). Investigations on the maturation and regulation of archaebacterial proteasomes. J Mol Biol, 327(1): 75–83

    Article  CAS  PubMed  Google Scholar 

  • Groll M, Ditzel L, Löwe J, Stock D, Bochtler M, Bartunik H D, Huber R (1997). Structure of 20S proteasome from yeast at 2.4 A resolution. Nature, 386(6624): 463–471

    Article  CAS  PubMed  Google Scholar 

  • Groll M, Glickman M H, Finley D, Bajorek M, Köhler A, Moroder L, Rubin D M, Huber R (2000). A gated channel into the proteasome core particle. Nat Struct Biol, 7(11): 1062–1067

    Article  CAS  PubMed  Google Scholar 

  • Groll M, Heinemeyer W, Jager S, Ullrich T, Bochtler M, Wolf D H, Huber R (1999). The catalytic sites of 20S proteasomes and their role in subunit maturation: a mutational and crystallographic study. Proc Natl Acad Sci USA, 96(20): 10976–10983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haarer B, Aggeli D, Viggiano S, Burke D J, Amberg D C (2011). Novel interactions between actin and the proteasome revealed by complex haploinsufficiency. PLoS Genet, 7(9): e1002288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanssum A, Zhong Z, Rousseau A, Krzyzosiak A, Sigurdardottir A, Bertolotti A (2014). An inducible chaperone adapts proteasome assembly to stress. Mol Cell, 55(4): 566–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatanaka A, Chen B, Sun J Q, Mano Y, Funakoshi M, Kobayashi H, Ju Y, Mizutani T, Shinmyozu K, Nakayama J, Miyamoto K, Uchida H, Oki M (2011). Fub1p, a novel protein isolated by boundary screening, binds the proteasome complex. Genes Genet Syst, 86(5): 305–314

    Article  CAS  PubMed  Google Scholar 

  • Heinemeyer W, Fischer M, Krimmer T, Stachon U, Wolf D H (1997). The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing. J Biol Chem, 272(40): 25200–25209

    Article  CAS  PubMed  Google Scholar 

  • Heink S, Ludwig D, Kloetzel P M, Kruger E (2005). IFN-gammainduced immune adaptation of the proteasome system is an accelerated and transient response. Proc Natl Acad Sci USA, 102(26): 9241–9246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano Y, Hayashi H, Iemura S, Hendil K B, Niwa S, Kishimoto T, Kasahara M, Natsume T, Tanaka K, Murata S (2006). Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes. Mol Cell, 24(6): 977–984

    Article  CAS  PubMed  Google Scholar 

  • Hirano Y, Hendil K B, Yashiroda H, Iemura S, Nagane R, Hioki Y, Natsume T, Tanaka K, Murata S (2005). A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature, 437(7063): 1381–1385

    Article  CAS  PubMed  Google Scholar 

  • Hirano Y, Kaneko T, Okamoto K, Bai M, Yashiroda H, Furuyama K, Kato K, Tanaka K, Murata S (2008). Dissecting beta-ring assembly pathway of the mammalian 20S proteasome. EMBO J, 27(16): 2204–2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoang B, Benavides A, Shi Y, Frost P, Lichtenstein A (2009). Effect of autophagy on multiple myeloma cell viability. Mol Cancer Ther, 8(7): 1974–1984

    Article  CAS  PubMed  Google Scholar 

  • Hoefer M M, Boneberg E M, Grotegut S, Kusch J, Illges H (2006). Possible tetramerisation of the proteasome maturation factor POMP/ proteassemblin/hUmp1 and its subcellular localisation. Int J Biol Macromol, 38(3-5): 259–267

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Luan B, Wu J, Shi Y (2016). An atomic structure of the human 26S proteasome. Nat Struct Mol Biol, 23(9): 778–785

    Article  CAS  PubMed  Google Scholar 

  • Huber E M, Heinemeyer W, Li X, Arendt C S, Hochstrasser M, Groll M (2016). A unified mechanism for proteolysis and autocatalytic activation in the 20S proteasome. Nat Commun, 7: 10900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huh WK, Falvo J V, Gerke L C, Carroll A S, Howson RW, Weissman J S, O’Shea E K (2003). Global analysis of protein localization in budding yeast. Nature, 425(6959): 686–691

    Article  CAS  PubMed  Google Scholar 

  • Ishii K, Noda M, Yagi H, Thammaporn R, Seetaha S, Satoh T, Kato K, Uchiyama S (2015). Disassembly of the self-assembled, double-ring structure of proteasome alpha7 homo-tetradecamer by alpha6. Sci Rep, 5: 18167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isono E, Nishihara K, Saeki Y, Yashiroda H, Kamata N, Ge L, Ueda T, Kikuchi Y, Tanaka K, Nakano A, Toh-e A (2007). The assembly pathway of the 19S regulatory particle of the yeast 26S proteasome. Mol Biol Cell, 18(2): 569–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwata A, Riley B E, Johnston J A, Kopito R R (2005). HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin. J Biol Chem, 280(48): 40282–40292

    Article  CAS  PubMed  Google Scholar 

  • Jager S, Groll M, Huber R, Wolf D H, Heinemeyer W (1999). Proteasome beta-type subunits: unequal roles of propeptides in core particle maturation and a hierarchy of active site function. J Mol Biol, 291(4): 997–1013

    Article  CAS  PubMed  Google Scholar 

  • Ju D, Xie Y (2004). Proteasomal degradation of RPN4 via two distinct mechanisms, ubiquitin-dependent and-independent. J Biol Chem, 279(23): 23851–23854

    Article  CAS  PubMed  Google Scholar 

  • Kaganovich D, Kopito R, Frydman J (2008). Misfolded proteins partition between two distinct quality control compartments. Nature, 454(7208): 1088–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko T, Hamazaki J, Iemura S, Sasaki K, Furuyama K, Natsume T, Tanaka K, Murata S (2009). Assembly pathway of the Mammalian proteasome base subcomplex is mediated by multiple specific chaperones. Cell, 137(5): 914–925

    Article  CAS  PubMed  Google Scholar 

  • Kim D U, Hayles J, Kim D, Wood V, Park H O, Won M, Yoo H S, Duhig T, Nam M, Palmer G, Han S, Jeffery L, Baek S T, Lee H, Shim Y S, Lee M, Kim L, Heo K S, Noh E J, Lee A R, Jang Y J, Chung K S, Choi S J, Park J Y, Park Y, Kim H M, Park S K, Park H J, Kang E J, Kim H B, Kang H S, Park H M, Kim K, Song K, Song K B, Nurse P, Hoe K L (2010a). Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe. Nat Biotechnol, 28(6): 617–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Saeki Y, Fukunaga K, Suzuki A, Takagi K, Yamane T, Tanaka K, Mizushima T, Kato K (2010b). Crystal structure of yeast rpn14, a chaperone of the 19 S regulatory particle of the proteasome. J Biol Chem, 285(20): 15159–15166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim Y C, Snoberger A, Schupp J, Smith D M (2015). ATP binding to neighbouring subunits and intersubunit allosteric coupling underlie proteasomal ATPase function. Nat Commun, 6(8520):1

    Google Scholar 

  • Kingsbury D J, Griffin T A, Colbert R A (2000). Novel propeptide function in 20 S proteasome assembly influences beta subunit composition. J Biol Chem, 275(31): 24156–24162

    Article  CAS  PubMed  Google Scholar 

  • Kleijnen M F, Roelofs J, Park S, Hathaway N A, Glickman M, King R W, Finley D (2007). Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites. Nat Struct Mol Biol, 14(12): 1180–1188

    Article  CAS  PubMed  Google Scholar 

  • Kloetzel P M (2004). Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII. Nat Immunol, 5(7): 661–669

    Article  CAS  PubMed  Google Scholar 

  • Kock M, NunesMM, Hemann M, Kube S, Jürgen Dohmen R, Herzog F, Ramos P C, Wendler P (2015). Proteasome assembly from 15S precursors involves major conformational changes and recycling of the Pba1-Pba2 chaperone. Nat Commun, 6: 6123

    Article  CAS  PubMed  Google Scholar 

  • Koizumi S, Irie T, Hirayama S, Sakurai Y, Yashiroda H, Naguro I, Ichijo H, Hamazaki J, Murata S (2016). The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction. eLife, 5: e18357

    Article  PubMed  PubMed Central  Google Scholar 

  • Kragelund B B, Schenstrom S M, Rebula C A, Panse V G, Hartmann-Petersen R (2016). DSS1/Sem1, a multifunctional and intrinsically disordered protein. Trends Biochem Sci, 41(5): 446–459

    Article  CAS  PubMed  Google Scholar 

  • Kriegenburg F, Seeger M, Saeki Y, Tanaka K, Lauridsen A M B, Hartmann-Petersen R, Hendil K B (2008). Mammalian 26S proteasomes remain intact during protein degradation. Cell, 135(2): 355–365

    Article  CAS  PubMed  Google Scholar 

  • Kulak N A, Pichler G, Paron I, Nagaraj N, Mann M (2014). Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat Methods, 11(3): 319–324

    Article  CAS  PubMed  Google Scholar 

  • Kusmierczyk A R, Hochstrasser M (2008). Some assembly required: dedicated chaperones in eukaryotic proteasome biogenesis. Biol Chem, 389(9): 1143–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusmierczyk A R, Kunjappu MJ, Funakoshi M, HochstrasserM(2008). A multimeric assembly factor controls the formation of alternative 20S proteasomes. Nat Struct Mol Biol, 15(3): 237–244

    Article  CAS  PubMed  Google Scholar 

  • Kusmierczyk A R, Kunjappu M J, Kim R Y, Hochstrasser M (2011). A conserved 20S proteasome assembly factor requires a C-terminal HbYX motif for proteasomal precursor binding. Nat Struct Mol Biol, 18(5): 622–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon Y D, Nagy I, Adams P D, Baumeister W, Jap B K (2004a). Crystal structures of the Rhodococcus proteasome with and without its propeptides: implications for the role of the pro-peptide in proteasome assembly. J Mol Biol, 335(1): 233–245

    Article  CAS  PubMed  Google Scholar 

  • Kwon Y D, Nagy I, Adams P D, Baumeister W, Jap B K (2004b). Crystal structures of the Rhodococcus proteasome with and without its pro-peptides: implications for the role of the pro-peptide in proteasome assembly. J Mol Biol, 335(1): 233–245

    Article  CAS  PubMed  Google Scholar 

  • Lander G C, Estrin E, Matyskiela M E, Bashore C, Nogales E, Martin A (2012). Complete subunit architecture of the proteasome regulatory particle. Nature, 482: 186–191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lasker K, Forster F, Bohn S, Walzthoeni T, Villa E, Unverdorben P, Beck F, Aebersold R, Sali A, Baumeister W (2012). Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach. Proc Natl Acad Sci USA, 109(5): 1380–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Tallec B, Barrault M B, Courbeyrette R, Guerois R, Marsolier-Kergoat M C, Peyroche A (2007). 20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals. Mol Cell, 27(4): 660–674

    Article  PubMed  CAS  Google Scholar 

  • Le Tallec B, Barrault M B, Guerois R, Carre T, Peyroche A (2009). Hsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasome. Mol Cell, 33(3): 389–399

    Article  PubMed  CAS  Google Scholar 

  • Lee S C, Shaw B D (2007). A novel interaction between Nmyristoylation and the 26S proteasome during cell morphogenesis. Mol Microbiol, 63(4): 1039–1053

    Article  CAS  PubMed  Google Scholar 

  • Lee S Y, De la Mota-Peynado A, Roelofs J (2011). Loss of Rpt5 protein interactions with the core particle and Nas2 protein causes the formation of faulty proteasomes that are inhibited by Ecm29 protein. J Biol Chem, 286(42): 36641–36651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leggett D S, Hanna J, Borodovsky A, Crosas B, Schmidt M, Baker R T, Walz T, Ploegh H, Finley D (2002). Multiple associated proteins regulate proteasome structure and function. Mol Cell, 10(3): 495–507

    Article  CAS  PubMed  Google Scholar 

  • Lehmann A, Janek K, Braun B, Kloetzel P M, Enenkel C (2002). 20 S proteasomes are imported as precursor complexes into the nucleus of yeast. J Mol Biol, 317(3): 401–413

    Article  CAS  PubMed  Google Scholar 

  • Lehmann A, Niewienda A, Jechow K, Janek K, Enenkel C (2010). Ecm29 fulfils quality control functions in proteasome assembly. Mol Cell, 38(6): 879–888

    Article  CAS  PubMed  Google Scholar 

  • Lehrbach N J, Ruvkun G (2016). Proteasome dysfunction triggers activation of SKN-1A/Nrf1 by the aspartic protease DDI-1. eLife, 5: e17721

    Article  PubMed  PubMed Central  Google Scholar 

  • Lek M, Karczewski K J, Minikel E V, Samocha K E, Banks E, Fennell T, O’Donnell-Luria A H, Ware J S, Hill A J, Cummings B B, Tukiainen T, Birnbaum D P, Kosmicki J A, Duncan L E, Estrada K, Zhao F, Zou J, Pierce-Hoffman E, Berghout J, Cooper D N, Deflaux N, De Pristo M, Do R, Flannick J, Fromer M, Gauthier L, Goldstein J, Gupta N, Howrigan D, Kiezun A, Kurki M I, Moonshine A L, Natarajan P, Orozco L, Peloso G M, Poplin R, Rivas M A, Ruano-Rubio V, Rose S A, Ruderfer D M, Shakir K, Stenson P D, Stevens C, Thomas B P, Tiao G, Tusie-Luna M T, Weisburd B, Won H H, Yu D, Altshuler D M, Ardissino D, Boehnke M, Danesh J, Donnelly S, Elosua R, Florez J C, Gabriel S B, Getz G, Glatt S J, Hultman C M, Kathiresan S, Laakso M, McCarroll S, McCarthy M I, McGovern D, McPherson R, Neale BM, Palotie A, Purcell SM, Saleheen D, Scharf J M, Sklar P, Sullivan P F, Tuomilehto J, Tsuang M T, Watkins H C, Wilson J G, Daly M J, MacArthur D G (2016). Analysis of proteincoding genetic variation in 60,706 humans. Nature, 536(7616): 285–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Dong Q, Tao Q, Gu J, Cui Y, Jiang X, Yuan J, Li W, Xu R, Jin Y, Li P, Weaver D T, Ma Q, Liu X, Cao C (2015). c-Abl regulates proteasome abundance by controlling the ubiquitin-proteasomal degradation of PSMA7 subunit. Cell Reports, 10(4): 484–496

    Article  CAS  PubMed  Google Scholar 

  • Li J, Zou C, Bai Y, Wazer D E, Band V, Gao Q (2006). DSS1 is required for the stability of BRCA2. Oncogene, 25(8): 1186–1194

    Article  CAS  PubMed  Google Scholar 

  • Li X, Kusmierczyk A R, Wong P, Emili A, Hochstrasser M (2007). beta- Subunit appendages promote 20S proteasome assembly by overcoming an Ump1-dependent checkpoint. EMBO J, 26(9): 2339–2349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Li Y, Arendt C S, Hochstrasser M (2016). Distinct elements in the proteasomal beta5 subunit propeptide required for autocatalytic processing and proteasome assembly. J Biol Chem, 291(4): 1991–2003

    Article  CAS  PubMed  Google Scholar 

  • Li X, Thompson D, Kumar B, De Martino G N (2014). Molecular and cellular roles of PI31 (PSMF1) protein in regulation of proteasome function. J Biol Chem, 289(25): 17392–17405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Yuan X, Liu J, Tian L, Quan J, Liu J, Chen X, Wang Y, Shi Z, Zhang J (2012). Validation of the association between PSMA6 -8 C/ G polymorphism and type 2 diabetes mellitus in Chinese Dongxiang and Han populations. Diabetes Res Clin Pract, 98(2): 295–301

    Article  CAS  PubMed  Google Scholar 

  • Lowe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995). Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science, 268(5210): 533–539

    CAS  PubMed  Google Scholar 

  • Luan B, Huang X, Wu J, Mei Z, Wang Y, Xue X, Yan C, Wang J, Finley D J, Shi Y, Wang F (2016). Structure of an endogenous yeast 26S proteasome reveals two major conformational states. Proc Natl Acad Sci USA, 113(10): 2642–2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mannhaupt G, Schnall R, Karpov V, Vetter I, Feldmann H (1999). Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Lett, 450(1-2): 27–34

    Article  CAS  PubMed  Google Scholar 

  • Mao I, Liu J, Li X, Luo H (2008). REGgamma, a proteasome activator and beyond? Cellular and molecular life sciences. Cell Mol Life Sci, 65: 3971–3980

    Article  CAS  PubMed  Google Scholar 

  • Marques A J, Glanemann C, Ramos P C, Dohmen R J (2007). The Cterminal extension of the beta7 subunit and activator complexes stabilize nascent 20 S proteasomes and promote their maturation. J Biol Chem, 282(48): 34869–34876

    Article  CAS  PubMed  Google Scholar 

  • Marshall R S, Li F, Gemperline D C, Book A J, Vierstra R D (2015). Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis. Mol Cell, 58(6): 1053–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall R S, McLoughlin F, Vierstra R D (2016). Autophagic turnover of inactive 26S Proteasomes in yeast is directed by the ubiquitin receptor Cue5 and the Hsp42 chaperone. Cell Reports, 16(6): 1717–1732

    Article  CAS  PubMed  Google Scholar 

  • Matyskiela M E, Lander G C, Martin A (2013). Conformational switching of the 26S proteasome enables substrate degradation. Nat Struct Mol Biol, 20(7): 781–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayr J, Seemuller E, Muller S A, Engel A, Baumeister W (1998a). Late events in the assembly of 20S proteasomes. J Struct Biol, 124(2-3): 179–188

    Article  CAS  PubMed  Google Scholar 

  • Mayr J, Seemuller E, Muller S A, Engel A, Baumeister W (1998b). Late events in the assembly of 20S proteasomes. J Struct Biol, 124(2-3): 179–188

    Article  CAS  PubMed  Google Scholar 

  • Mayr J, Wang H R, Nederlof P, Baumeister W (1999). The import pathway of human and Thermoplasma 20S proteasomes into HeLa cell nuclei is different from that of classical NLS-bearing proteins. Biol Chem, 380(10): 1183–1192

    Article  CAS  PubMed  Google Scholar 

  • Meiners S, Heyken D, Weller A, Ludwig A, Stangl K, Kloetzel P M, Kruger E (2003). Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of Mammalian proteasomes. J Biol Chem, 278(24): 21517–21525

    Article  CAS  PubMed  Google Scholar 

  • Murata S, Sasaki K, Kishimoto T, Niwa S, Hayashi H, Takahama Y, Tanaka K (2007). Regulation of CD8+ T cell development by thymus-specific proteasomes. Science, 316(5829): 1349–1353

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Umehara T, Tanaka A, Horikoshi M, Padmanabhan B, Yokoyama S (2007). Structural basis for the recognition between the regulatory particles Nas6 and Rpt3 of the yeast 26S proteasome. Biochem Biophys Res Commun, 359(3): 503–509

    Article  CAS  PubMed  Google Scholar 

  • Nandi D, Woodward E, Ginsburg D B, Monaco J J (1997). Intermediates in the formation of mouse 20S proteasomes: implications for the assembly of precursor beta subunits. EMBO J, 16(17): 5363–5375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nederlof P M, Wang H R, Baumeister W (1995). Nuclear localization signals of human and Thermoplasma proteasomal alpha subunits are functional in vitro. Proc Natl Acad Sci USA, 92(26): 12060–12064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pack C G, Yukii H, Toh-e A, Kudo T, Tsuchiya H, Kaiho A, Sakata E, Murata S, Yokosawa H, Sako Y, Baumeister W, Tanaka K, Saeki Y (2014). Quantitative live-cell imaging reveals spatio-temporal dynamics and cytoplasmic assembly of the 26S proteasome. Nat Commun, 5: 3396

    Article  PubMed  CAS  Google Scholar 

  • Padmanabhan A, Vuong S A, Hochstrasser M (2016). Assembly of an evolutionarily conserved alternative proteasome isoform in human cells. Cell Reports, 14(12): 2962–2974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey U B, Nie Z, Batlevi Y, McCray B A, Ritson G P, Nedelsky N B, Schwartz S L, DiProspero N A, Knight M A, Schuldiner O, Padmanabhan R, Hild M, Berry D L, Garza D, Hubbert C C, Yao T P, Baehrecke E H, Taylor J P (2007). HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature, 447(7146): 859–863

    Article  CAS  PubMed  Google Scholar 

  • Panfair D, Ramamurthy A, Kusmierczyk A R (2015). Alpha-ring independent assembly of the 20S proteasome. Sci Rep, 5: 13130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paraskevopoulos K, Kriegenburg F, TathamMH, Rösner H I, Medina B, Larsen I B, Brandstrup R, Hardwick K G, Hay R T, Kragelund B B, Hartmann-Petersen R, Gordon C (2014). Dss1 is a 26S proteasome ubiquitin receptor. Mol Cell, 56(3): 453–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park S, Kim W, Tian G, Gygi S P, Finley D (2011). Structural defects in the regulatory particle-core particle interface of the proteasome induce a novel proteasome stress response. J Biol Chem, 286(42): 36652–36666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park S, Li X, Kim HM, Singh C R, Tian G, HoytMA, Lovell S, Battaile K P, Zolkiewski M, Coffino P, Roelofs J, Cheng Y, Finley D (2013). Reconfiguration of the proteasome during chaperone-mediated assembly. Nature, 497(7450): 512–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park S, Roelofs J, Kim W, Robert J, Schmidt M, Gygi S P, Finley D (2009). Hexameric assembly of the proteasomal ATPases is templated through their C termini. Nature, 459(7248): 866–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathare G R, Nagy I, Sledz P, Anderson D J, Zhou H J, Pardon E, Steyaert J, Forster F, Bracher A, Baumeister W (2014). Crystal structure of the proteasomal deubiquitylation module Rpn8-Rpn11. Proc Natl Acad Sci USA, 111(8): 2984–2989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters L Z, Karmon O, David-Kadoch G, Hazan R, Yu T, Glickman M H, Ben-Aroya S (2015). The protein quality control machinery regulates its misassembled proteasome subunits. PLoS Genet, 11(4): e1005178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Radhakrishnan S K, den Besten W, Deshaies R J (2014). p97-dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition. eLife, 3: e01856

    Article  PubMed  PubMed Central  Google Scholar 

  • Radhakrishnan S K, Lee C S, Young P, Beskow A, Chan J Y, Deshaies R J (2010). Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Mol Cell, 38(1): 17–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos P C, Hockendorff J, Johnson E S, Varshavsky A, Dohmen R J (1998). Ump1p is required for proper maturation of the 20S proteasome and becomes its substrate upon completion of the assembly. Cell, 92(4): 489–499

    Article  CAS  PubMed  Google Scholar 

  • Ramos P C, Marques A J, London M K, Dohmen R J (2004). Role of Cterminal extensions of subunits beta2 and beta7 in assembly and activity of eukaryotic proteasomes. J Biol Chem, 279(14): 14323–14330

    Article  CAS  PubMed  Google Scholar 

  • Reits E A, Benham A M, Plougastel B, Neefjes J, Trowsdale J (1997). Dynamics of proteasome distribution in living cells. EMBO J, 16(20): 6087–6094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roelofs J, Park S, Haas W, Tian G, McAllister F E, Huo Y, Lee B H, Zhang F, Shi Y, Gygi S P, Finley D (2009). Chaperone-mediated pathway of proteasome regulatory particle assembly. Nature, 459(7248): 861–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russell S J, Steger K A, Johnston S A (1999). Subcellular localization, stoichiometry, and protein levels of 26 S proteasome subunits in yeast. J Biol Chem, 274(31): 21943–21952

    Article  CAS  PubMed  Google Scholar 

  • Sa-Moura B, Simões A M, Fraga J, Fernandes H, Abreu I A, Botelho H M, Gomes C M, Marques A J, Dohmen R J, Ramos P C, Macedo-Ribeiro S (2013). Biochemical and biophysical characterization of recombinant yeast proteasome maturation factor ump1. Comput Struct Biotechnol J, 7(8): e201304006

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadre-Bazzaz K, Whitby F G, Robinson H, Formosa T, Hill C P (2010). Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening. Mol Cell, 37(5): 728–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saeki Y, Toh E A, Kudo T, Kawamura H, Tanaka K (2009). Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell, 137(5): 900–913

    Article  CAS  PubMed  Google Scholar 

  • Sakata E, Stengel F, Fukunaga K, Zhou M, Saeki Y, Förster F, Baumeister W, Tanaka K, Robinson C V (2011). The catalytic activity of Ubp6 enhances maturation of the proteasomal regulatory particle. Mol Cell, 42(5): 637–649

    Article  CAS  PubMed  Google Scholar 

  • Satoh T, Saeki Y, Hiromoto T, Wang Y H, Uekusa Y, Yagi H, Yoshihara H, Yagi-Utsumi M, Mizushima T, Tanaka K, Kato K (2014). Structural basis for proteasome formation controlled by an assembly chaperone nas2. Structure, 22(5): 731–743

    Article  CAS  PubMed  Google Scholar 

  • Savulescu A F, Shorer H, Kleifeld O, Cohen I, Gruber R, GlickmanMH, Harel A (2011). Nuclear import of an intact preassembled proteasome particle. Mol Biol Cell, 22(6): 880–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt M, Haas W, Crosas B, Santamaria P G, Gygi S P, Walz T, Finley D (2005). The HEAT repeat protein Blm10 regulates the yeast proteasome by capping the core particle. Nat Struct Mol Biol, 12(4): 294–303

    Article  CAS  PubMed  Google Scholar 

  • Schmidtke G, Kraft R, Kostka S, Henklein P, Frömmel C, Löwe J, Huber R, Kloetzel PM, Schmidt M(1996). Analysis of mammalian 20S proteasome biogenesis: the maturation of beta-subunits is an ordered two-step mechanism involving autocatalysis. EMBO J, 15: 6887–6898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidtke G, Schmidt M, Kloetzel P M (1997). Maturation of mammalian 20 S proteasome: purification and characterization of 13 S and 16 S proteasome precursor complexes. J Mol Biol, 268(1): 95–106

    Article  CAS  PubMed  Google Scholar 

  • Schweitzer A, Aufderheide A, Rudack T, Beck F, Pfeifer G, Plitzko JM, Sakata E, Schulten K, Förster F, Baumeister W (2016). Structure of the human 26S proteasome at a resolution of 3.9 A. Proc Natl Acad Sci USA, 113(28): 7816–7821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sha Z, Goldberg A L (2014). Proteasome-mediated processing of Nrf1 is essential for coordinate induction of all proteasome subunits and p97. Curr Biol, 24(14): 1573–1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharon M, Taverner T, Ambroggio X I, Deshaies R J, Robinson C V (2006). Structural organization of the 19S proteasome lid: insights from MS of intact complexes. PLoS Biol, 4(8): e267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharon M, Witt S, Glasmacher E, Baumeister W, Robinson C V (2007). Mass spectrometry reveals the missing links in the assembly pathway of the bacterial 20 S proteasome. J Biol Chem, 282(25): 18448–18457

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Chen X, Elsasser S, Stocks B B, Tian G, Lee B H, Shi Y, Zhang N, de Poot S A H, Tuebing F, Sun S, Vannoy J, Tarasov S G, Engen J R, Finley D, Walters K J (2016). Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome. Science

    Google Scholar 

  • Shirozu R, Yashiroda H, Murata S (2015). Identification of minimum Rpn4-responsive elements in genes related to proteasome functions. FEBS Lett, 589(8): 933–940

    Article  CAS  PubMed  Google Scholar 

  • Singh C R, Lovell S, Mehzabeen N, Chowdhury W Q, Geanes E S, Battaile K P, Roelofs J (2014). 1.15 A resolution structure of the proteasome-assembly chaperone Nas2 PDZ domain. Acta Crystallogr F Struct Biol Commun, 70(4): 418–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sledz P, Unverdorben P, Beck F, Pfeifer G, Schweitzer A, Forster F, Baumeister W (2013). Structure of the 26S proteasome with ATPgammaS bound provides insights into the mechanism of nucleotidedependent substrate translocation. Proc Natl Acad Sci USA, 110(18): 7264–7269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith D M, Chang S C, Park S, Finley D, Cheng Y, Goldberg A L (2007). Docking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome’s alpha ring opens the gate for substrate entry. Mol Cell, 27(5): 731–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokolova V, Li F, Polovin G, Park S (2015). Proteasome activation is mediated via a functional switch of the Rpt6 C-terminal tail following chaperone-dependent assembly. Sci Rep, 5: 14909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadtmueller B M, Hill C P (2011). Proteasome activators. Mol Cell, 41(1): 8–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stadtmueller B M, Kish-Trier E, Ferrell K, Petersen C N, Robinson H, Myszka D G, Eckert D M, Formosa T, Hill C P (2012). Structure of a proteasome Pba1-Pba2 complex: implications for proteasome assembly, activation, and biological function. J Biol Chem, 287(44): 37371–37382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi K, Kim S, Yukii H, Ueno M, Morishita R, Endo Y, Kato K, Tanaka K, Saeki Y, Mizushima T (2012). Structural basis for specific recognition of Rpt1p, an ATPase subunit of 26S proteasome, by proteasome-dedicated chaperone Hsm3p. J Biol Chem, 287(15): 12172–12182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi K, Saeki Y, Yashiroda H, Yagi H, Kaiho A, Murata S, Yamane T, Tanaka K, Mizushima T, Kato K (2014). Pba3-Pba4 heterodimer acts as a molecular matchmaker in proteasome alpha-ring formation. Biochem Biophys Res Commun, 450(2): 1110–1114

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi J, Tamura T (2004). Recombinant ATPases of the yeast 26S proteasome activate protein degradation by the 20S proteasome. FEBS Lett, 565(1-3): 39–42

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Yoshimura T, Tamura T, Fujiwara T, Kumatori A, Ichihara A (1990). Possible mechanism of nuclear translocation of proteasomes. FEBS Lett, 271(1-2): 41–46

    Article  CAS  PubMed  Google Scholar 

  • Thompson D, Hakala K, De Martino G N (2009). Subcomplexes of PA700, the 19S regulator of the 26 S proteasome, reveal relative roles of AAA subunits in 26 S proteasome assembly and activation and ATPase activity. J Biol Chem, 284(37): 24891–24903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian G, Park S, Lee M J, Huck B, McAllister F, Hill C P, Gygi S P, Finley D (2011). An asymmetric interface between the regulatory and core particles of the proteasome. Nat Struct Mol Biol, 18(11): 1259–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomko R J, Funakoshi M, Schneider K, Wang J, Hochstrasser M (2010). Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly. Mol Cell, 38(3): 393–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomko R J Jr, Hochstrasser M (2011). Incorporation of the Rpn12 subunit couples completion of proteasome regulatory particle lid assembly to lid-base joining. Mol Cell, 44(6): 907–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomko R J, Hochstrasser M (2013). Molecular architecture and assembly of the eukaryotic proteasome. Annu Rev Biochem, 82(1): 415–445

    Article  CAS  PubMed  Google Scholar 

  • Tomko R J, Hochstrasser M(2014). The intrinsically disordered Sem1 protein functions as a molecular tether during proteasome lid biogenesis. Mol Cell, 53(3): 433–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomko R J Jr, Taylor D W, Chen Z A, Wang H W, Rappsilber J, Hochstrasser M (2015). A Single alpha helix drives extensive remodeling of the proteasome lid and completion of regulatory particle assembly. Cell, 163(2): 432–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uekusa Y, Okawa K, Yagi-Utsumi M, Serve O, Nakagawa Y, Mizushima T, Yagi H, Saeki Y, Tanaka K, Kato K (2014). Backbone (1)H, (1)(3)C and (1)(5)N assignments of yeast Ump1, an intrinsically disordered protein that functions as a proteasome assembly chaperone. Biomol NMR Assign, 8(2): 383–386

    Article  CAS  PubMed  Google Scholar 

  • Unno M, Mizushima T, Morimoto Y, Tomisugi Y, Tanaka K, Yasuoka N, Tsukihara T (2002). The structure of the mammalian 20S proteasome at 2.75 A resolution. Structure, 10(5): 609–618

    Article  CAS  PubMed  Google Scholar 

  • Unverdorben P, Beck F, led P, Schweitzer A, Pfeifer G, Plitzko J M, Baumeister W, Forster F (2014). Deep classification of a large cryo- EM dataset defines the conformational landscape of the 26S proteasome. Proc Natl Acad Sci USA, 111(15): 5544–5549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ustrell V, Hoffman L, Pratt G, Rechsteiner M (2002). PA200, a nuclear proteasome activator involved in DNA repair. EMBO J, 21(13): 3516–3525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velichutina I, Connerly P L, Arendt C S, Li X, Hochstrasser M (2004). Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast. EMBO J, 23(3): 500–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verma R, et al (2002). Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science, 298(5593): 611–615

    Article  CAS  PubMed  Google Scholar 

  • Volker C, Lupas A N (2002). Molecular evolution of proteasomes. Curr Top Microbiol Immunol, 268: 1–22

    CAS  PubMed  Google Scholar 

  • Waite K A, De-La Mota-Peynado A, Vontz G, Roelofs J (2016). Starvation induces proteasome autophagy with different pathways for core and regulatory particles. J Biol Chem, 291(7): 3239–3253

    Article  CAS  PubMed  Google Scholar 

  • Wang H R, Kania M, Baumeister W, Nederlof P M (1997). Import of human and Thermoplasma 20S proteasomes into nuclei of HeLa cells requires functional NLS sequences. Eur J Cell Biol, 73: 105–113

    CAS  PubMed  Google Scholar 

  • Wang W, Chan J Y (2006). Nrf1 is targeted to the endoplasmic reticulum membrane by an N-terminal transmembrane domain. Inhibition of nuclear translocation and transacting function. J Biol Chem, 281(28): 19676–19687

    CAS  PubMed  Google Scholar 

  • Wani P S, Rowland M A, Ondracek A, Deeds E J, Roelofs J (2015). Maturation of the proteasome core particle induces an affinity switch that controls regulatory particle association. Nat Commun, 6: 6384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wani P S, Suppahia A, Capalla X, Ondracek A, Roelofs J (2016). Phosphorylation of the C-terminal tail of proteasome subunit alpha7 is required for binding of the proteasome quality control factor Ecm29. Sci Rep, 6: 27873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weberruss MH, Savulescu A F, Jando J, Bissinger T, Harel A, Glickman M H, Enenkel C (2013). Blm10 facilitates nuclear import of proteasome core particles. EMBO J, 32(20): 2697–2707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei S J, Williams J G, Dang H, Darden T A, Betz B L, Humble M M, Chang F M, Trempus C S, Johnson K, Cannon R E, Tennant R W (2008). Identification of a specific motif of the DSS1 protein required for proteasome interaction and p53 protein degradation. J Mol Biol, 383(3): 693–712

    Article  CAS  PubMed  Google Scholar 

  • Welk V, Coux O, Kleene V, Abeza C, Trümbach D, Eickelberg O, Meiners S (2016). Inhibition of proteasome activity induces formation of alternative proteasome complexes. J Biol Chem, 291(25): 13147–13159

    Article  CAS  PubMed  Google Scholar 

  • Wendler P, Lehmann A, Janek K, Baumgart S, Enenkel C (2004). The bipartite nuclear localization sequence of Rpn2 is required for nuclear import of proteasomal base complexes via karyopherin alphabeta and proteasome functions. J Biol Chem, 279(36): 37751–37762

    Article  CAS  PubMed  Google Scholar 

  • Whitby F G, Masters E I, Kramer L, Knowlton J R, Yao Y, Wang C C, Hill C P (2000). Structural basis for the activation of 20S proteasomes by 11S regulators. Nature, 408(6808): 115–120

    Article  CAS  PubMed  Google Scholar 

  • Witt E, Zantopf D, Schmidt M, Kraft R, Kloetzel P M, Kruger E (2000). Characterisation of the newly identified human Ump1 homologue POMP and analysis of LMP7(beta 5i) incorporation into 20 S proteasomes. J Mol Biol, 301(1): 1–9

    Article  CAS  PubMed  Google Scholar 

  • Wollenberg K, Swaffield J C (2001). Evolution of proteasomal ATPases. Mol Biol Evol, 18(6): 962–974

    Article  CAS  PubMed  Google Scholar 

  • Worden E J, Padovani C, Martin A (2014). Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation. Nat Struct Mol Biol, 21(3): 220–227

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Varshavsky A (2001). RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a negative feedback circuit. Proc Natl Acad Sci USA, 98(6): 3056–3061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao T, Cohen R E (2002). A cryptic protease couples deubiquitination and degradation by the proteasome. Nature, 419(6905): 403–407

    Article  CAS  PubMed  Google Scholar 

  • Yao Y, Toth C R, Huang L, Wong M L, Dias P, Burlingame A L, Coffino P, Wang C C (1999). alpha5 subunit in Trypanosoma brucei proteasome can self-assemble to form a cylinder of four stacked heptamer rings. Biochem J, 344(Pt 2): 349–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yashiroda H, Mizushima T, Okamoto K, Kameyama T, Hayashi H, Kishimoto T, Niwa S, Kasahara M, Kurimoto E, Sakata E, Takagi K, Suzuki A, Hirano Y, Murata S, Kato K, Yamane T, Tanaka K (2008). Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes. Nat Struct Mol Biol, 15(3): 228–236

    Article  CAS  PubMed  Google Scholar 

  • Yashiroda H, Toda Y, Otsu S, Takagi K, Mizushima T, Murata S (2015). N-terminal alpha7 deletion of the proteasome 20S core particle substitutes for yeast PI31 function. Mol Cell Biol, 35(1): 141–152

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Smith D M, Kim H M, Rodriguez V, Goldberg A L, Cheng Y (2010). Interactions of PAN’s C-termini with archaeal 20S proteasome and implications for the eukaryotic proteasome-ATPase interactions. EMBO J, 29(3): 692–702

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Livnat-Levanon N, Kleifeld O, Mansour W, Nakasone M A, Castaneda C A, Dixon E K, Fushman D, Reis N, Pick E, GlickmanM H (2015). Base-CP proteasome can serve as a platform for stepwise lid formation. Biosci Rep, 35(3): e00194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zaiss D M, Standera S, Kloetzel P M, Sijts A J (2002). PI31 is a modulator of proteasome formation and antigen processing. Proc Natl Acad Sci USA, 99(22): 14344–14349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Hu M, Tian G, Zhang P, Finley D, Jeffrey P D, Shi Y (2009). Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol Cell, 34(4): 473–484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Lucocq J M, Yamamoto M, Hayes J D (2007). The NHB1 (Nterminal homology box 1) sequence in transcription factor Nrf1 is required to anchor it to the endoplasmic reticulum and also to enable its asparagine-glycosylation. Biochem J, 408(2): 161–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu K, Dunner K Jr, McConkey D J (2010). Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells. Oncogene, 29(3): 451–462

    Article  CAS  PubMed  Google Scholar 

  • Zuhl F, Seemuller E, Golbik R, Baumeister W (1997). Dissecting the assembly pathway of the 20S proteasome. FEBS Lett, 418(1-2): 189–194

    Article  CAS  PubMed  Google Scholar 

  • Zwickl P, Kleinz J, Baumeister W (1994). Critical elements in proteasome assembly. Nat Struct Biol, 1(11): 765–770

    Article  CAS  PubMed  Google Scholar 

  • Zwickl P, Ng D, Woo K M, Klenk H P, Goldberg A L (1999). An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26S proteasome, activates protein breakdown by 20 S proteasomes. J Biol Chem, 274(37): 26008–26014

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to their colleagues whose work could not be discussed due to space limitations. This work was supported in part by start-up funds from the Florida State University College of Medicine (R. J.T.Jr.) and by a Research Support Funds Grant from Indiana University- Purdue University Indianapolis (A.R.K.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert J. Tomko Jr. or Andrew R. Kusmierczyk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howell, L.A., Tomko, R.J. & Kusmierczyk, A.R. Putting it all together: intrinsic and extrinsic mechanisms governing proteasome biogenesis. Front. Biol. 12, 19–48 (2017). https://doi.org/10.1007/s11515-017-1439-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-017-1439-1

Keywords

Navigation