Skip to main content
Log in

Cellular, physiological and pathological aspects of the long non-coding RNA NEAT1

  • Review
  • Published:
Frontiers in Biology

Abstract

BACKGROUND

The majority of mammalian genomes have been found to be transcribed into non-coding RNAs. One category of non-coding RNAs is classified as long non-coding RNAs (lncRNAs) based on their transcript sizes larger than 200 nucleotides. Growing evidence has shown that lncRNAs are not junk transcripts and play regulatory roles in multiple aspects of biological processes. Dysregulation of lncRNA expression has also been linked to diseases, in particular cancer. Therefore, studies of lncRNAs have attracted significant interest in the field of medical research. Nuclear enriched abundant transcript 1 (NEAT1), a nuclear lncRNA, has recently emerged as a key regulator involved in various cellular processes, physiological responses, developmental processes, and disease development and progression.

OBJECTIVE

This review will summarize and discuss the most recent findings with regard to the roles of NEAT1 in the function of the nuclear paraspeckle, cellular pathways, and physiological responses and processes. Particularly, the most recently reported studies regarding the pathological roles of deregulated NEAT1 in cancer are highlighted in this review.

METHODS

We performed a systematic literature search using the Pubmed search engine. Studies published over the past 8 years (between January 2009 and August 2016) were the sources of literature review. The following keywords were used: “Nuclear enriched abundant transcript 1,” “NEAT1,” and “paraspeckles.”

RESULTS

The Pubmed search identified 34 articles related to the topic of the review. Among the identified literature, 13 articles report findings related to cellular functions of NEAT1 and eight articles are the investigations of physiological functions of NEAT1. The remaining 13 articles are studies of the roles of NEAT1 in cancers.

CONCLUSION

Recent advances in NEAT1 studies reveal the multifunctional roles of NEAT1 in various biological processes, which are beyond its role in nuclear paraspeckles. Recent studies also indicate that dysregulation of NEAT1 function contributes to the development and progression of various cancers. More investigations will be needed to address the detailed mechanisms regarding how NEAT1 executes its cellular and physiological functions and how NEAT1 dysregulation results in tumorigenesis, and to explore the potential of NEAT1 as a target in cancer diagnosis, prognosis and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adriaens C, Standaert L, Barra J, Latil M, Verfaillie A, Kalev P, Boeckx B, Wijnhoven PW, Radaelli E, Vermi W, Leucci E, Lapouge G, Beck B, van den Oord J, Nakagawa S, Hirose T, Sablina A A, Lambrechts D, Aerts S, Blanpain C, Marine J C (2016). p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat Med, 22(8): 861–868

    Article  CAS  PubMed  Google Scholar 

  • Arredouani M S, Lu B, Bhasin M, Eljanne M, Yue W, Mosquera J M, Bubley G J, Li V, Rubin M A, Libermann T A, Sanda M G (2009). Identification of the transcription factor single-minded homologue 2 as a potential biomarker and immunotherapy target in prostate cancer. Clin Cancer Res, 15(18): 5794–5802

    Article  CAS  PubMed  Google Scholar 

  • Athanasiadis A, Rich A, Maas S (2004). Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol, 2 (12): e391

    Article  PubMed  PubMed Central  Google Scholar 

  • Birney E, Stamatoyannopoulos J A, Dutta A, Guigó R, Gingeras T R, Margulies E H, Weng Z, Snyder M, Dermitzakis E T, Thurman R E, KuehnMS, Taylor CM, Neph S, Koch CM, Asthana S, Malhotra A, Adzhubei I, Greenbaum J A, Andrews R M, Flicek P, Boyle P J, Cao H, Carter N P, Clelland G K, Davis S, Day N, Dhami P, Dillon S C, Dorschner M O, Fiegler H, Giresi P G, Goldy J, Hawrylycz M, Haydock A, Humbert R, James K D, Johnson B E, Johnson E M, Frum T T, Rosenzweig E R, Karnani N, Lee K, Lefebvre G C, Navas P A, Neri F, Parker S C, Sabo P J, Sandstrom R, Shafer A, Vetrie D, Weaver M, Wilcox S, Yu M, Collins F S, Dekker J, Lieb J D, Tullius T D, Crawford G E, Sunyaev S, Noble W S, Dunham I, Denoeud F, Reymond A, Kapranov P, Rozowsky J, Zheng D, Castelo R, Frankish A, Harrow J, Ghosh S, Sandelin A, Hofacker I L, Baertsch R, Keefe D, Dike S, Cheng J, Hirsch H A, Sekinger E A, Lagarde J, Abril J F, Shahab A, Flamm C, Fried C, Hackermüller J, Hertel J, Lindemeyer M, Missal K, Tanzer A, Washietl S, Korbel J, Emanuelsson O, Pedersen J S, Holroyd N, Taylor R, Swarbreck D, Matthews N, Dickson MC, Thomas D J, Weirauch MT, Gilbert J, Drenkow J, Bell I, Zhao X, Srinivasan K G, Sung WK, Ooi H S, Chiu K P, Foissac S, Alioto T, Brent M, Pachter L, Tress M L, Valencia A, Choo S W, Choo C Y, Ucla C, Manzano C, Wyss C, Cheung E, Clark T G, Brown J B, Ganesh M, Patel S, Tammana H, Chrast J, Henrichsen C N, Kai C, Kawai J, Nagalakshmi U, Wu J, Lian Z, Lian J, Newburger P, Zhang X, Bickel P, Mattick J S, Carninci P, Hayashizaki Y, Weissman S, Hubbard T, Myers R M, Rogers J, Stadler P F, Lowe T M, Wei C L, Ruan Y, Struhl K, Gerstein M, Antonarakis S E, Fu Y, Green E D, Karaöz U, Siepel A, Taylor J, Liefer L A, Wetterstrand K A, Good P J, Feingold E A, Guyer M S, Cooper G M, Asimenos G, Dewey C N, Hou M, Nikolaev S, Montoya-Burgos J I, Löytynoja A, Whelan S, Pardi F, Massingham T, Huang H, Zhang N R, Holmes I, Mullikin J C, Ureta-Vidal A, Paten B, Seringhaus M, Church D, Rosenbloom K, Kent W J, Stone E A, Batzoglou S, Goldman N, Hardison R C, Haussler D, Miller W, Sidow A, Trinklein N D, Zhang Z D, Barrera L, Stuart R, King D C, Ameur A, Enroth S, Bieda M C, Kim J, Bhinge A A, Jiang N, Liu J, Yao F, Vega V B, Lee CW, Ng P, Shahab A, Yang A, Moqtaderi Z, Zhu Z, Xu X, Squazzo S, Oberley M J, Inman D, Singer M A, Richmond T A, Munn K J, Rada-Iglesias A, Wallerman O, Komorowski J, Fowler J C, Couttet P, Bruce A W, Dovey O M, Ellis P D, Langford C F, Nix D A, Euskirchen G, Hartman S, Urban A E, Kraus P, Van Calcar S, Heintzman N, Kim T H, Wang K, Qu C, Hon G, Luna R, Glass C K, Rosenfeld M G, Aldred S F, Cooper S J, Halees A, Lin JM, Shulha H P, Zhang X, Xu M, Haidar J N, Yu Y, Ruan Y, Iyer V R, Green R D, Wadelius C, Farnham P J, Ren B, Harte R A, Hinrichs A S, Trumbower H, Clawson H, Hillman-Jackson J, Zweig A S, Smith K, Thakkapallayil A, Barber G, Kuhn R M, Karolchik D, Armengol L, Bird C P, de Bakker P I, Kern A D, Lopez-Bigas N, Martin J D, Stranger B E, Woodroffe A, Davydov E, Dimas A, Eyras E, Hallgrímsdóttir I B, Huppert J, Zody M C, Abecasis G R, Estivill X, Bouffard G G, Guan X, Hansen N F, Idol J R, Maduro V V, Maskeri B, McDowell J C, Park M, Thomas P J, Young A C, Blakesley R W, Muzny D M, Sodergren E, Wheeler D A, Worley K C, Jiang H, Weinstock G M, Gibbs R A, Graves T, Fulton R, Mardis E R, Wilson R K, Clamp M, Cuff J, Gnerre S, Jaffe D B, Chang J L, Lindblad-Toh K, Lander E S, Koriabine M, Nefedov M, Osoegawa K, Yoshinaga Y, Zhu B, de Jong P J, and the ENCODE Project Consortium, the NISC Comparative Sequencing Program, the Baylor College of Medicine Human Genome Sequencing Center, the Washington University Genome Sequencing Center, the Broad Institute, the Children’s Hospital Oakland Research Institute (2007). Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 447(7146): 799–816

    Article  CAS  PubMed  Google Scholar 

  • Bond C S, Fox A H (2009). Paraspeckles: nuclear bodies built on long noncoding RNA. J Cell Biol, 186(5): 637–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckley N E, Mullan P B (2012). BRCA1–conductor of the breast stem cell orchestra: the role of BRCA1 in mammary gland development and identification of cell of origin of BRCA1 mutant breast cancer. Stem Cell Rev, 8(3): 982–993

    Article  CAS  PubMed  Google Scholar 

  • Cardinale S, Cisterna B, Bonetti P, Aringhieri C, Biggiogera M, Barabino S M (2007). Subnuclear localization and dynamics of the Pre-mRNA 3' end processing factor mammalian cleavage factor I 68-kDa subunit. Mol Biol Cell, 18(4): 1282–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest AR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk A M, Chiu K P, Choudhary V, Christoffels A, Clutterbuck D R, Crowe M L, Dalla E, Dalrymple B P, de Bono B, Della Gatta G, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher C F, Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras T R, Gojobori T, Green R E, Gustincich S, Harbers M, Hayashi Y, Hensch T K, Hirokawa N, Hill D, Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M, Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan S P, Kruger A, Kummerfeld S K, Kurochkin IV, Lareau L F, Lazarevic D, Lipovich L, Liu J, Liuni S, McWilliam S, Madan Babu M, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H, Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P, Nilsson R, Nishiguchi S, Nishikawa S, Nori F, Ohara O, Okazaki Y, Orlando V, Pang KC, Pavan WJ, Pavesi G, Pesole G, Petrovsky N, Piazza S, Reed J, Reid J F, Ring B Z, Ringwald M, Rost B, Ruan Y, Salzberg S L, Sandelin A, Schneider C, Schönbach C, Sekiguchi K, Semple C A, Seno S, Sessa L, Sheng Y, Shibata Y, Shimada H, Shimada K, Silva D, Sinclair B, Sperling S, Stupka E, Sugiura K, Sultana R, Takenaka Y, Taki K, Tammoja K, Tan S L, Tang S, Taylor MS, Tegner J, Teichmann S A, Ueda H R, Van Nimwegen E, Verardo R, Wei C L, Yagi K, Yamanishi H, Zabarovsky E, Zhu S, Zimmer A, Hide W, Bult C, Grimmond S M, Teasdale R D, Liu E T, Brusic V, Quackenbush J, Wahlestedt C, Mattick J S, Hume D A, Kai C, Sasaki D, Tomaru Y, Fukuda S, Kanamori-Katayama M, Suzuki M, Aoki J, Arakawa T, Iida J, Imamura K, Itoh M, Kato T, Kawaji H, Kawagashira N, Kawashima T, Kojima M, Kondo S, Konno H, Nakano K, Ninomiya N, Nishio T, Okada M, Plessy C, Shibata K, Shiraki T, Suzuki S, Tagami M, Waki K, Watahiki A, Okamura-Oho Y, Suzuki H, Kawai J, Hayashizaki Y; FANTOM Consortium.; RIKEN Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group) (2005). The transcriptional landscape of the mammalian genome. Science, 309(5740): 1559–1563

    Article  CAS  PubMed  Google Scholar 

  • Chai Y, Liu J, Zhang Z, Liu L (2016). HuR-regulated lncRNA NEAT1 stability in tumorigenesis and progression of ovarian cancer. Cancer Med, 5(7): 1588–1598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakravarty D, Sboner A, Nair S S, Giannopoulou E, Li R, Hennig S, Mosquera J M, Pauwels J, Park K, Kossai M, MacDonald T Y, Fontugne J, Erho N, Vergara I A, Ghadessi M, Davicioni E, Jenkins R B, Palanisamy N, Chen Z, Nakagawa S, Hirose T, Bander N H, Beltran H, Fox A H, Elemento O, Rubin M A (2014). The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer. Nat Commun, 5: 5383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L L, Carmichael G G (2009). Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol Cell, 35(4): 467–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L L, Carmichael G G (2010). Decoding the function of nuclear long non-coding RNAs. Curr Opin Cell Biol, 22(3): 357–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L L, De Cerbo J N, Carmichael G G (2008). Alu element-mediated gene silencing. EMBO J, 27(12): 1694–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Kong J, Ma Z, Gao S, Feng X (2015). Up regulation of the long non-coding RNA NEAT1 promotes esophageal squamous cell carcinoma cell progression and correlates with poor prognosis. Am J Cancer Res, 5(9): 2808–2815

    Article  PubMed  PubMed Central  Google Scholar 

  • Choudhry H, Albukhari A, Morotti M, Haider S, Moralli D, Smythies J, Schödel J, Green C M, Camps C, Buffa F, Ratcliffe P, Ragoussis J, Harris A L, Mole D R (2015). Tumor hypoxia induces nuclear paraspeckle formation through HIF-2a dependent transcriptional activation of NEAT1 leading to cancer cell survival. Oncogene, 34 (34): 4546

    Article  CAS  PubMed  Google Scholar 

  • Chujo T, Yamazaki T, Hirose T (2016). Architectural RNAs (arcRNAs): A class of long noncoding RNAs that function as the scaffold of nuclear bodies. Biochim Biophys Acta, 1859(1): 139–146

    Article  CAS  PubMed  Google Scholar 

  • Clemson C M, Hutchinson J N, Sara S A, Ensminger A W, Fox A H, Chess A, Lawrence J B (2009). An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell, 33(6): 717–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper D R, Carter G, Li P, Pate R, Watson J E, Patel N A (2014). Long Non-Coding RNA NEAT1 Associates with SRp40 to Temporally Regulate PPARg2 Splicing during Adipogenesis in 3T3-L1 Cells. Genes (Basel), 5(4): 1050–1063

    Google Scholar 

  • Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles D G, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carninci P, Brown J B, Lipovich L, Gonzalez J M, Thomas M, Davis C A, Shiekhattar R, Gingeras T R, Hubbard T J, Notredame C, Harrow J, Guigó R (2012). The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res, 22(9): 1775–1789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doria M, Neri F, Gallo A, Farace M G, Michienzi A (2009). Editing of HIV-1 RNA by the double-stranded RNA deaminase ADAR1 stimulates viral infection. Nucleic Acids Res, 37(17): 5848–5858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eidem T M, Kugel J F, Goodrich J A (2016). Noncoding RNAs: regulators of the mammalian transcription machinery. J Mol Biol, 428(12): 2652–2659

    Article  CAS  PubMed  Google Scholar 

  • Foulkes W D (2004). BRCA1 functions as a breast stem cell regulator. J Med Genet, 41(1): 1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox A H, Bond C S, Lamond A I (2005). P54nrb forms a heterodimer with PSP1 that localizes to paraspeckles in an RNA-dependent manner. Mol Biol Cell, 16(11): 5304–5315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox A H, Lam Y W, Leung A K, Lyon C E, Andersen J, Mann M, Lamond A I (2002). Paraspeckles: a novel nuclear domain. Curr Biol, 12(1): 13–25

    Article  CAS  PubMed  Google Scholar 

  • Fu J W, Kong Y, Sun X (2016). Long noncoding RNA NEAT1 is an unfavorable prognostic factor and regulates migration and invasion in gastric cancer. J Cancer Res Clin Oncol, 142(7): 1571–1579

    Article  CAS  PubMed  Google Scholar 

  • Gernapudi R, Wolfson B, Zhang Y, Yao Y, Yang P, Asahara H, Zhou Q (2015). MicroRNA 140 promotes expression of long noncoding RNA NEAT1 in adipogenesis. Mol Cell Biol, 36(1): 30–38

    PubMed  PubMed Central  Google Scholar 

  • Guo S, Chen W, Luo Y, Ren F, Zhong T, Rong M, Dang Y, Feng Z, Chen G (2015). Clinical implication of long non-coding RNA NEAT1 expression in hepatocellular carcinoma patients. Int J Clin Exp Pathol, 8(5): 5395–5402

    PubMed  PubMed Central  Google Scholar 

  • Guru S C, Agarwal S K, Manickam P, Olufemi S E, Crabtree J S, Weisemann JM, Kester MB, Kim Y S, Wang Y, Emmert-BuckMR, Liotta L A, Spiegel AM, Boguski MS, Roe B A, Collins F S, Marx S J, Burns L, Chandrasekharappa S C (1997). A transcript map for the 2.8-Mb region containing the multiple endocrine neoplasia type 1 locus. Genome Res, 7(7): 725–735

    CAS  PubMed  PubMed Central  Google Scholar 

  • He C, Jiang B, Ma J, Li Q (2016). Aberrant NEAT1 expression is associated with clinical outcome in high grade glioma patients. APMIS, 124(3): 169–174

    Article  CAS  PubMed  Google Scholar 

  • Hirose T, Virnicchi G, Tanigawa A, Naganuma T, Li R, Kimura H, Yokoi T, Nakagawa S, Bénard M, Fox A H, Pierron G (2014). NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Mol Biol Cell, 25(1): 169–183

    Article  PubMed  PubMed Central  Google Scholar 

  • Hutchinson J N, Ensminger AW, Clemson CM, Lynch C R, Lawrence J B, Chess A (2007). A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics, 8 (1): 39

    Article  PubMed  PubMed Central  Google Scholar 

  • Imamura K, Imamachi N, Akizuki G, Kumakura M, Kawaguchi A, Nagata K, Kato A, Kawaguchi Y, Sato H, Yoneda M, Kai C, Yada T, Suzuki Y, Yamada T, Ozawa T, Kaneki K, Inoue T, Kobayashi M, Kodama T, Wada Y, Sekimizu K, Akimitsu N (2014). Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol Cell, 53(3): 393–406

    Article  CAS  PubMed  Google Scholar 

  • International Human Genome Sequencing Consortium (2004). Finishing the euchromatic sequence of the human genome. Nature, 431(7011): 931–945

    Article  Google Scholar 

  • Iyer MK, Niknafs Y S, Malik R, Singhal U, Sahu A, Hosono Y, Barrette T R, Prensner J R, Evans J R, Zhao S, Poliakov A, Cao X, Dhanasekaran S M, Wu Y M, Robinson D R, Beer D G, Feng F Y, Iyer H K, Chinnaiyan A M (2015). The landscape of long noncoding RNAs in the human transcriptome. Nat Genet, 47(3): 199–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang P, Wu X, Wang X, Huang W, Feng Q (2016). NEAT1 upregulates EGCG-induced CTR1 to enhance cisplatin sensitivity in lung cancer cells. Oncotarget, 7(28): 43337–43351

    PubMed  PubMed Central  Google Scholar 

  • Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermuller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumais E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, Tammana H, Gingeras TR (2007). RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science, 316(5830): 1484–1488

    Article  CAS  PubMed  Google Scholar 

  • Ke H, Zhao L, Feng X, Xu H, Zou L, Yang Q, Su X, Peng L, Jiao B (2016). NEAT1 is required for survival of breast cancer cells through FUS and miR-548. Gene Regul Syst Bio, 10 (Suppl 1): 11–17

    PubMed  PubMed Central  Google Scholar 

  • Kellis M, Wold B, Snyder MP, Bernstein B E, Kundaje A, Marinov G K, Ward L D, Birney E, Crawford G E, Dekker J, Dunham I, Elnitski L L, Farnham P J, Feingold E A, Gerstein M, Giddings M C, Gilbert D M, Gingeras T R, Green E D, Guigo R, Hubbard T, Kent J, Lieb J D, Myers R M, Pazin M J, Ren B, Stamatoyannopoulos J A, Weng Z, White K P, Hardison R C (2014). Defining functional DNA elements in the human genome. Proc Natl Acad Sci USA, 111(17): 6131–6138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D D, Kim T T, Walsh T, Kobayashi Y, Matise T C, Buyske S, Gabriel A (2004). Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res, 14(9): 1719–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levanon E Y, Eisenberg E, Yelin R, Nemzer S, Hallegger M, Shemesh R, Fligelman Z Y, Shoshan A, Pollock S R, Sztybel D, Olshansky M, Rechavi G, Jantsch M F (2004). Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat Biotechnol, 22(8): 1001–1005

    Article  CAS  PubMed  Google Scholar 

  • Lo P K, Zhang Y, Wolfson B, Gernapudi R, Yao Y, Duru N, Zhou Q (2016). Dysregulation of the BRCA1/long non-coding RNA NEAT1 signaling axis contributes to breast tumorigenesis. Oncotarget, (In press)

  • Lu Y, Li T, Wei G, Liu L, Chen Q, Xu L, Zhang K, Zeng D, Liao R (2016). The long non-coding RNA NEAT1 regulates epithelial to mesenchymal transition and radioresistance in through miR-204/ ZEB1 axis in nasopharyngeal carcinoma. Tumour Biol, 37(9): 11733–11741

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Liu L, Yan F, Wei W, Deng J, Sun J (2016). Enhanced expression of long non-coding RNA NEAT1 is associated with the progression of gastric adenocarcinomas. World J Surg Oncol, 14 (1): 41

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao Y S, Zhang B, Spector D L (2011). Biogenesis and function of nuclear bodies. Trends Genet, 27(8): 295–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercer TR, Dinger ME, Mattick J S (2009). Long non-coding RNAs: insights into functions. Nature reviews, 10(3): 155–159

    Article  CAS  PubMed  Google Scholar 

  • Naganuma T, Nakagawa S, Tanigawa A, Sasaki Y F, Goshima N, Hirose T (2012). Alternative 3'-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. EMBO J, 31(20): 4020–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa S, Naganuma T, Shioi G, Hirose T (2011). Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. J Cell Biol, 193(1): 31–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa S, Shimada M, Yanaka K, Mito M, Arai T, Takahashi E, Fujita Y, Fujimori T, Standaert L, Marine J C, Hirose T (2014). The lncRNA Neat1 is required for corpus luteum formation and the establishment of pregnancy in a subpopulation of mice. Development, 141(23): 4618–4627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasr R, Guillemin M C, Ferhi O, Soilihi H, Peres L, Berthier C, Rousselot P, Robledo-Sarmiento M, Lallemand-Breitenbach V, Gourmel B, Vitoux D, Pandolfi P P, Rochette-Egly C, Zhu J, de Thé H (2008). Eradication of acute promyelocytic leukemia-initiating cells through PML-RARA degradation. Nat Med, 14(12): 1333–1342

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Yu S, Li H, Xiang H, Peng J, Jiang S (2014). MicroRNAs: emerging roles in adipogenesis and obesity. Cell Signal, 26(9): 1888–1896

    Article  CAS  PubMed  Google Scholar 

  • Platani M, Lamond A I (2004). Nuclear organisation and subnuclear bodies. Prog Mol Subcell Biol, 35: 1–22

    Article  PubMed  Google Scholar 

  • Poomsawat S, Sanguansin S, Punyasingh J, Vejchapipat P, Punyarit P (2016). Expression of cdk6 in head and neck squamous cell carcinoma. Clin Oral Investig, 20(1): 57–63

    Article  PubMed  Google Scholar 

  • Prasanth K V, Prasanth S G, Xuan Z, Hearn S, Freier S M, Bennett C F, ZhangMQ, Spector D L (2005). Regulating gene expression through RNA nuclear retention. Cell, 123(2): 249–263

    Article  CAS  PubMed  Google Scholar 

  • Prasanth K V, Spector D L (2007). Eukaryotic regulatory RNAs: an answer to the ‘genome complexity’ conundrum. Genes Dev, 21(1): 11–42

    Article  CAS  PubMed  Google Scholar 

  • Ricke WA, McPherson S J, Bianco J J, Cunha G R, Wang Y, Risbridger G P (2008). Prostatic hormonal carcinogenesis is mediated by in situ estrogen production and estrogen receptor alpha signaling. FASEB J, 22(5): 1512–1520

    Article  CAS  PubMed  Google Scholar 

  • Sasaki Y T, Ideue T, Sano M, Mituyama T, Hirose T (2009). MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc Natl Acad Sci USA, 106(8): 2525–2530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt A M, Chang H Y (2016). Long Noncoding RNAs in Cancer Pathways. Cancer Cell, 29(4): 452–463

    Article  CAS  PubMed  Google Scholar 

  • Semenza G L (2010). Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene, 29(5): 625–634

    Article  CAS  PubMed  Google Scholar 

  • Setlur S R, Mertz K D, Hoshida Y, Demichelis F, Lupien M, Perner S, Sboner A, Pawitan Y, Andrén O, Johnson L A, Tang J, Adami H O, Calza S, Chinnaiyan A M, Rhodes D, Tomlins S, Fall K, Mucci L A, Kantoff PW, StampferMJ, Andersson S O, Varenhorst E, Johansson J E, Brown M, Golub T R, Rubin M A (2008). Estrogen-dependent signaling in a molecularly distinct subclass of aggressive prostate cancer. J Natl Cancer Inst, 100(11): 815–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon M D, Wang C I, Kharchenko P V, West J A, Chapman B A, Alekseyenko A A, Borowsky M L, Kuroda M I, Kingston R E (2011). The genomic binding sites of a noncoding RNA. Proc Natl Acad Sci USA, 108(51): 20497–20502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souquere S, Beauclair G, Harper F, Fox A, Pierron G (2010). Highly ordered spatial organization of the structural long noncoding NEAT1 RNAs within paraspeckle nuclear bodies. Mol Biol Cell, 21(22): 4020–4027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Standaert L, Adriaens C, Radaelli E, Van Keymeulen A, Blanpain C, Hirose T, Nakagawa S, Marine JC (2014). The long noncoding RNA Neat1 is required for mammary gland development and lactation. RNA (New York, NY, 20(12): 1844–1849

    Article  CAS  Google Scholar 

  • Sunwoo H, Dinger M E, Wilusz J E, Amaral P P, Mattick J S, Spector D L (2009). MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res, 19(3): 347–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang K C, Chang H Y (2011). Molecular mechanisms of long noncoding RNAs. Mol Cell, 43(6): 904–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Wu T, Zhou H, Jin Q, He G, Yu H, Xuan L, Wang X, Tian L, Sun Y, Liu M, Qu L (2016). Long noncoding RNA NEAT1 promotes laryngeal squamous cell cancer through regulating miR-107/CDK6 pathway. J Exp Clin Cancer Res, 35 (1): 22

    Article  PubMed  PubMed Central  Google Scholar 

  • Waterston R H, Lindblad-Toh K, Birney E, Rogers J, Abril J F, Agarwal P, Agarwala R, Ainscough R, AlexanderssonM, An P, Antonarakis S E, Attwood J, Baertsch R, Bailey J, BarlowK, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, BrentMR, Brown D G, Brown S D, Bult C, Burton J, Butler J, Campbell R D, Carninci P, Cawley S, Chiaromonte F, Chinwalla A T, Church DM, Clamp M, Clee C, Collins F S, Cook L L, Copley R R, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty K D, Deri J, Dermitzakis E T, Dewey C, Dickens N J, Diekhans M, Dodge S, Dubchak I, Dunn D M, Eddy S R, Elnitski L, Emes R D, Eswara P, Eyras E, Felsenfeld A, Fewell G A, Flicek P, Foley K, FrankelWN, Fulton L A, Fulton R S, Furey T S, Gage D, Gibbs R A, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves T A, Green E D, Gregory S, Guigó R, Guyer M, Hardison R C, Haussler D, Hayashizaki Y, Hillier L W, Hinrichs A, Hlavina W, HolzerT, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe D B, Johnson L S, Jones M, Jones T A, Joy A, Kamal M, Karlsson E K, Karolchik D, Kasprzyk A, Kawai J, Keibler E, Kells C, Kent W J, Kirby A, Kolbe D L, Korf I, Kucherlapati R S, Kulbokas E J, Kulp D, Landers T, Leger J P, Leonard S, Letunic I, Levine R, Li J, Li M, Lloyd C, Lucas S, Ma B, Maglott D R, Mardis E R, Matthews L, Mauceli E, Mayer J H, McCarthy M, McCombie W R, McLaren S, McLay K, McPherson J D, Meldrim J, Meredith B, Mesirov J P, Miller W, Miner T L, Mongin E, Montgomery K T, Morgan M, Mott R, Mullikin J C, Muzny D M, Nash W E, Nelson J O, Nhan M N, Nicol R, Ning Z, Nusbaum C, O’Connor M J, Okazaki Y, Oliver K, Overton-Larty E, Pachter L, Parra G, Pepin K H, Peterson J, Pevzner P, Plumb R, Pohl C S, Poliakov A, Ponce T C, Ponting C P, Potter S, Quail M, ReymondA, Roe B A, Roskin K M, Rubin E M, Rust A G, Santos R, Sapojnikov V, Schultz B, Schultz J, Schwartz M S, Schwartz S, Scott C, Seaman S, Searle S, Sharpe T, Sheridan A, Shownkeen R, Sims S, Singer J B, Slater G, Smit A, Smith D R, Spencer B, Stabenau A, Stange-Thomann N, Sugnet C, Suyama M, Tesler G, Thompson J, Torrents D, Trevaskis E, Tromp J, Ucla C, Ureta-Vidal A, Vinson J P, Von Niederhausern A C, Wade C M, Wall M, Weber R J, Weiss R B, Wendl M C, West A P, Wetterstrand K, Wheeler R, Whelan S, Wierzbowski J, Willey D, WilliamsS, Wilson R K, Winter E, Worley K C, Wyman D, Yang S, Yang S P, Zdobnov E M, Zody M C, Lander E S, and the Mouse Genome Sequencing Consortium (2002). Initial sequencing and comparative analysis of the mouse genome. Nature, 420(6915): 520–562

    Article  CAS  PubMed  Google Scholar 

  • West J A, Davis C P, Sunwoo H, Simon M D, Sadreyev R I, Wang P I, Tolstorukov M Y, Kingston R E (2014). The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol Cell, 55(5): 791–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki T, Hirose T (2015). The building process of the functional paraspeckle with long non-coding RNAs. Front Biosci (Elite Ed), 7(1): 1–41

    Article  Google Scholar 

  • You J, Zhang Y, Liu B, Li Y, Fang N, Zu L, Li X, Zhou Q (2014). MicroRNA-449a inhibits cell growth in lung cancer and regulates long noncoding RNA nuclear enriched abundant transcript 1. Indian J Cancer, 51 (7 Suppl 3): e77–e81

    Article  PubMed  Google Scholar 

  • Zeng C, Xu Y, Xu L, Yu X, Cheng J, Yang L, Chen S, Li Y (2014). Inhibition of long non-coding RNA NEAT1 impairs myeloid differentiation in acute promyelocytic leukemia cells. BMC Cancer, 14 (1): 693

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Chen C Y, Yedavalli V S, Jeang K T (2013). NEAT1 long noncoding RNA and paraspeckle bodies modulate HIV-1 posttranscriptional expression. MBio, 4 (1): e00596–e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Carmichael G G (2001). The fate of dsRNA in the nucleus: a p54 (nrb)-containing complex mediates the nuclear retention of promiscuously A-to-I edited RNAs. Cell, 106(4): 465–475

    Article  CAS  PubMed  Google Scholar 

  • Zhen L, Yun-Hui L, Hong-Yu D, Jun M, Yi-Long Y (2016). Long noncoding RNA NEAT1 promotes glioma pathogenesis by regulating miR-449b-5p/c-Met axis. Tumour Biol, 37(1): 673–683

    Article  PubMed  Google Scholar 

  • Zhu J, Gianni M, Kopf E, Honore N, Chelbi-Alix M, Koken M, Quignon F, Rochette-Egly C, de The H (1999). Retinoic acid induces proteasome-dependent degradation of retinoic acid receptor alpha (RARalpha) and oncogenic RARalpha fusion proteins. Proc Natl Acad Sci U S A, 96(26): 14807–14812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zolotukhin A S, Michalowski D, Bear J, Smulevitch S V, Traish A M, Peng R, Patton J, Shatsky I N, Felber B K (2003). PSF acts through the human immunodeficiency virus type 1 mRNA instability elements to regulate virus expression. Mol Cell Biol, 23(18): 6618–6630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health (NIH) R01 grants [grant numbers 5R01CA157779-03, 5R01CA163820-04] to Q.Z.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lo, PK., Wolfson, B. & Zhou, Q. Cellular, physiological and pathological aspects of the long non-coding RNA NEAT1. Front. Biol. 11, 413–426 (2016). https://doi.org/10.1007/s11515-016-1433-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-016-1433-z

Keywords

Navigation