Skip to main content
Log in

Saccharomyces cervisiae as an Efficient Carrier for Delivery of Bioactives: a Review

  • REVIEW ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Recently, there has been growing interest in usingnatural vesicles for encapsulation of variousfood-grade ingredients. The structure ofyeast cells, along with their presence in human nutrition which recognized as GRAS material, has made them an attractiveand novel encapsulation vehicle for the food and drug industry. This paperreviewsthebenefits of microencapsulation in yeast cells, the factors affecting on encapsulation process, releasing profile and also structural changes of microorganism after encapsulation. All relevant databases were searched for the terms “yeast cell”, “Saccharomyces cerevisiae” and “encapsulation” without limitation up to 15th September 2018.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.S. Fazly Bazzaz, B. Khameneh, N. Namazi, M. Iranshahi, D. Davoodi, S. Golmohammadzadeh, Lett. Appl. Microbiol. 66(6), 506–513 (2018)

    Article  CAS  PubMed  Google Scholar 

  2. B.S. Fazly Bazzaz, B. Khameneh, H. Zarei, S. Golmohammadzadeh, Microb. Pathog. 93, 137–144 (2016)

    Article  CAS  PubMed  Google Scholar 

  3. D.G. Atashbeyk, B. Khameneh, M. Tafaghodi, B.S. Fazly Bazzaz, Pharm. Biol. 52(11), 1423–1428 (2014)

    Article  CAS  PubMed  Google Scholar 

  4. H. Pirouzmand, B. Khameneh, M. Tafaghodi, Pharm. Biol. 55, 212 (2017)

    Article  CAS  PubMed  Google Scholar 

  5. B.-N. Pham-Hoang, H. Phan-Thi, Y. Waché, Front. Chem. 3, 36 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. J.R. Bishop, G. Nelson, J. Lamb, J. Microencapsul. 15(6), 761–773 (1998)

    Article  CAS  PubMed  Google Scholar 

  7. V. Normand, G. Dardelle, P.E. Bouquerand, L. Nicolas, D.J. Johnston, J. Agric. Food Chem. 53(19), 7532–7543 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. G. Shi, L. Rao, H. Yu, H. Xiang, H. Yang, R. Ji, Int. J. Pharm. 349(1-2), 83–93 (2008)

    Article  CAS  PubMed  Google Scholar 

  9. G. Shi, L. Rao, H. Yu, H. Xiang, G. Pen, S. Long, C. Yang, J. Food Eng. 80(4), 1060–1067 (2007)

    Article  CAS  Google Scholar 

  10. R. Salari, O. Rajabi, Z. Khashyarmanesh, M. Fathi Najafi, B.S. Fazly Bazzaz, Iran J Pharm Res. 14, 1247 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. R. Salari, B.S. Bazzaz, O. Rajabi, Z. Khashyarmanesh, Daru. 21(1), 73 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. E.I. Paramera, V.T. Karathanos, S.J. Konteles, in Microencapsulation in the Food Industry, ed. by A. G. Gaonkar, N. Vasisht, A. R. Khare, R. Sobel. Yeast cells and yeast-based materials for microencapsulation (Academic Press, San Diego, 2014), p. 267

    Google Scholar 

  13. S. Blanquet, G. Garrait, E. Beyssac, C. Perrier, S. Denis, G. Hébrard, M. Alric, Eur. J. Pharm. Biopharm. 61(1-2), 32–39 (2005)

    Article  CAS  PubMed  Google Scholar 

  14. D.R. Iassonova, E.G. Hammond, S. Beattie, E. JAOCS. 85(8), 711–716 (2008)

    Article  CAS  Google Scholar 

  15. B.N. Pham-Hoang, A. Voilley, Y. Wache, Colloids Surf. B Biointerfaces. 148, 220–228 (2016)

    Article  CAS  PubMed  Google Scholar 

  16. E.I. Paramera, S.J. Konteles, V.T. Karathanos, Food Chem. 125(3), 913–922 (2011)

    Article  CAS  Google Scholar 

  17. F. Ciamponi, C. Duckham, N. Tirelli, Appl. Microbiol. Biotechnol. 95(6), 1445–1456 (2012)

    Article  CAS  PubMed  Google Scholar 

  18. G. Nelson, Duckham, S. C., Crothers, M. E. D. Microencapsulation in Yeast Cells and Applications in Drug Delivery. Polymeric Drug Delivery I. ACS Symposium Series. 923: American Chemical Society; 2006. p. 268

  19. L. Nguyen Han, Huynh Hong Van, L., Van Duc, T., Le, H. Encapsulation of lactobacillus acidophilus in yeast cell walls (Saccharomyces cerevisiae) for improving survival in gastrointestinal conditions 2016

  20. G. Shi, L. Rao, Q. Xie, J. Li, B. Li, X. Xiong, Vib. Spectrosc. 53(2), 289–295 (2010)

    Article  CAS  Google Scholar 

  21. A. Czerniak, P. Kubiak, W. Białas, T. Jankowski, J. Food Eng. 167, 2–11 (2015)

    Article  CAS  Google Scholar 

  22. M.B. Sangwai, P. Vavia, R. J Microencapsul. 28(4), 311–322 (2011)

    Article  CAS  Google Scholar 

  23. C.K. Chow, S.P. Palecek, Biotechnol. Prog. 20, 449 (2004)

    Article  CAS  PubMed  Google Scholar 

  24. G. Dardelle, V. Normand, M. Steenhoudt, P.-E. Bouquerand, M. Chevalier, P. Baumgartner, Food Hydrocoll. 21(5-6), 953–960 (2007)

    Article  CAS  Google Scholar 

  25. E.R. Soto, G.R. Ostroff, Bioconjug. Chem. 19(4), 840–848 (2008)

    Article  CAS  PubMed  Google Scholar 

  26. E.I. Paramera, S.J. Konteles, V.T. Karathanos, Food Chem. 125(3), 892–902 (2011)

    Article  CAS  Google Scholar 

  27. S. Young, S. Dea, N. Nitin, Food Res. Int. 100, 100–112 (2017)

    Article  CAS  PubMed  Google Scholar 

  28. S. Mokhtari, S.M. Jafari, M. Khomeiri, Y. Maghsoudlou, M. Ghorbani, Food Res. Int. 96, 19–26 (2017)

    Article  CAS  PubMed  Google Scholar 

  29. S. Mokhtari, M. Khomeiri, S.M. Jafari, Y. Maghsoudlou, M. Ghorbani, Int. J. Food Sci. Technol. 52(4), 1042–1048 (2017)

    Article  CAS  Google Scholar 

  30. A. da Silva Lima, A.P. Maciel, C.d.J.S. Mendonça, L.M. Costa Junior, Ind. Crop. Prod. 108, 190–194 (2017)

    Article  CAS  Google Scholar 

  31. A. Sultana, A. Miyamoto, Q. Lan Hy, Y. Tanaka, Y. Fushimi, H. Yoshii, J. Food Eng. 199, 36–41 (2017)

    Article  CAS  Google Scholar 

  32. A. Sultana, Y. Tanaka, Y. Fushimi, H. Yoshii, Food Res. Int. 106, 809–816 (2018)

    Article  CAS  PubMed  Google Scholar 

  33. E. Dadkhodazade, A. Mohammadi, S. Shojaee-Aliabadi, A.M. Mortazavian, L. Mirmoghtadaie, S.M. Hosseini, Food Biophys. 13(4), 404–411 (2018)

    Article  Google Scholar 

  34. M. Ghoneum, N.K. Badr El-Din, E. Noaman, L. Tolentino, Cancer Immunol. Immunother. 57(4), 581–592 (2008)

    Article  PubMed  Google Scholar 

  35. G. Kogan, M. Pajtinka, M. Babincova, E. Miadokova, P. Rauko, D. Slamenova, T.A. Korolenko, Neoplasma. 55, 387 (2008)

    CAS  PubMed  Google Scholar 

  36. S.M. Bowman, S.J. Free, Bioessays. 28(8), 799–808 (2006)

    Article  PubMed  Google Scholar 

  37. H. Zlotnik, M.P. Fernandez, B. Bowers, E. Cabib, J. Bacteriol. 159, 1018 (1984)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. J.G. de Nobel, F.M. Klis, J. Priem, T. Munnik, H. van den Ende, Yeast. 6(6), 491–499 (1990)

    Article  PubMed  Google Scholar 

  39. J. Wu, Y. Guan, Q. Zhong, Food Chem. 172, 121–128 (2015)

    Article  CAS  PubMed  Google Scholar 

  40. C. Laroche, P. Gervais, Appl. Microbiol. Biotechnol. 60(6), 743–747 (2003)

    Article  CAS  PubMed  Google Scholar 

  41. D.R. Korber, A. Choi, G.M. Wolfaardt, D.E. Caldwell, Appl. Environ. Microbiol. 62, 3939 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. J.G. De Nobel, C. Dijkers, E. Hooijberg, F.M. Klis, Microbiology. 135(7), 2077–2084 (1989)

    Article  Google Scholar 

  43. B.N. Pham-Hoang, C. Romero-Guido, H. Phan-Thi, Y. Wache, Appl. Microbiol. Biotechnol. 97(15), 6635–6645 (2013)

    Article  CAS  PubMed  Google Scholar 

  44. R. Scherrer, L. Louden, P. Gerhardt, J. Bacteriol. 118, 534 (1974)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. G. Kilcher, D. Delneri, C. Duckham, N. Tirelli, Faraday Discuss. 139, 199 (2008)

    Article  CAS  PubMed  Google Scholar 

  46. C. Cappellaro, V. Mrsa, W. Tanner, J. Bacteriol. 180, 5030 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  47. M. Werner-Washburne, E. Braun, G.C. Johnston, R. Singer, A. Microbiol Rev. 57, 383 (1993)

    CAS  PubMed  Google Scholar 

  48. F.M. Klis, A. Boorsma, P.W. De Groot, Yeast. 23(3), 185–202 (2006)

    Article  CAS  PubMed  Google Scholar 

  49. F.M. Klis, P. Mol, K. Hellingwerf, S. Brul, FEMS Microbiol. Rev. 26(3), 239–256 (2002)

    Article  CAS  PubMed  Google Scholar 

  50. P.W. de Groot, E.A. Kraneveld, Q.Y. Yin, H.L. Dekker, U. Gross, W. Crielaard, C.G. de Koster, O. Bader, F.M. Klis, M. Weig, Eukaryot. Cell 7(11), 1951–1964 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  51. T.H. Kim, Y.S. Oh, S.-J. Kim, J. Microbiol. Biotechnol. 10, 333 (2000)

    CAS  Google Scholar 

  52. J. Li, S.H. Ying, L.T. Shan, M.G. Feng, Appl. Microbiol. Biotechnol. 85(4), 975–984 (2010)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibi Sedigheh Fazly Bazzaz.

Ethics declarations

Conflict of Interest

The authors report no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakhaee Moghadam, M., Khameneh, B. & Fazly Bazzaz, B.S. Saccharomyces cervisiae as an Efficient Carrier for Delivery of Bioactives: a Review. Food Biophysics 14, 346–353 (2019). https://doi.org/10.1007/s11483-019-09584-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-019-09584-0

Keywords

Navigation