Skip to main content
Log in

Vapor Barrier Properties and Mechanical Behaviors of Composite Hydroxypropyl Methylcelluose/Zein Nanoparticle Films

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Composite films of hydroxypropyl methylcellulose and zein nanoparticles (ZNP) were prepared to create a biopolymer-based film with reduced vapor permeability and potential for active-packaging applications. Microscopy verified the dispersion of ZNP with diameter of ~100 nm throughout the width and depth of the films, with ZNP forming sub-micrometer clusters of nanoparticles at loaded volume fractions >0.15. Incorporation of non-hygroscopic ZNP increased film-water contact angles to >70 degrees and decreased water vapor permeability of films by ~10–30%. Extensional measurements of films described an increase in tensile strength from 27 kPa to 49 kPA, a decreased capacity to elongate, and an initial increase followed by gradual decrease in Young’s moduli with increasing ZNP fractions. Decreased elasticity was observed within microscale regions of the films at higher ZNP volume fractions using dynamic force spectroscopy, and the trends were strongly correlated with bulk Young’s moduli of the composite films. A mathematical model rationalized the initially increased and subsequently decreased Young’s modulus by the change in ZNP dispersion/clustering combined with a collapse of the interfacial zone surrounding ZNP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

BFS:

Bimodal force spectroscopy

DLS:

Dynamic light scattering

HPMC:

Hydroxypropyl methylcellulose

WVP:

Water Vapor Permeability

ZNP:

Zein nanoparticles

References

  1. J. Hammer, M.H.S. Kraak, J.R. Parsons, Rev. Environ. Contam. Toxicol. 220, 1–44 (2012). https://doi.org/10.1007/978-1-4614-3414-6_1

    CAS  Google Scholar 

  2. J.W. Rhim, H.M. Park, C.S. Ha, Prog. Polym. Sci. 38(10–11), 1629–1652 (2013). https://doi.org/10.1016/j.progpolymsci.2013.05.008

    Article  CAS  Google Scholar 

  3. V. Siracusa, P. Rocculi, S. Romani, M. Dalla Rosa, Trends Food Sci. Technol. 19(12), 634–643 (2008). https://doi.org/10.1016/j.tifs.2008.07.003

    Article  CAS  Google Scholar 

  4. A. Arora, G.W. Padua, J. Food Sci. 75(1), R43–R49 (2010). https://doi.org/10.1111/j.1750-3841.2009.01456.x

    Article  CAS  Google Scholar 

  5. Z. Akbari, T. Ghomashchi, S. Moghadam, Int. J. Food Eng. 3(4), 1–24 (2007)

    Article  Google Scholar 

  6. M. Abdollahi, M. Rezaei, G. Farzi, J. Food Eng. 111(2), 343–350 (2012). https://doi.org/10.1016/j.jfoodeng.2012.02.012

    Article  CAS  Google Scholar 

  7. P. Persico, V. Ambrogi, C. Carfagna, P. Cerruti, I. Ferrocino, G. Mauriello, Polym. Eng. Sci. 49(7), 1447–1455 (2009). https://doi.org/10.1002/pen.21191

    Article  CAS  Google Scholar 

  8. J. N. BeMiller and K. C. Huber, in Food Chemistry, ed. by S. Dadodaran, K. L. Parkin and O. R. Fennema (CRC Press, Boca Raton 2008), pp. 83–154

  9. H. Moller, S. Grelier, P. Pardon, V. Coma, J. Agric. Food Chem. 52, 6585–6591 (2004). https://doi.org/10.1021/jf0306690

    Article  Google Scholar 

  10. M.R. de Moura, F.A. Aouada, R.J. Avena-Bustillos, T.H. McHugh, J.M. Krochta, L.H.C. Mattoso, J. Food Eng. 92(4), 448–453 (2009)

    Article  Google Scholar 

  11. A. Jiménez, M.J. Fabra, P. Talens, A. Chiralt, Carbohydr. Polym. 82(3), 585–593 (2010). https://doi.org/10.1016/j.carbpol.2010.05.014

    Article  Google Scholar 

  12. I. Sebti, F. Ham-Pichavant, V. Coma, J. Agric. Food Chem. 50, 4290–4294 (2002). https://doi.org/10.1021/jf0115488

    Article  CAS  Google Scholar 

  13. S.L. Kamper, O. Fennema, J. Food Sci. 49, 1482–1485 (1984). https://doi.org/10.1111/j.1365-2621.1984.tb12826.x

    Article  CAS  Google Scholar 

  14. I. Sebti, E. Chollet, P. Degraeve, C. Noel, E. Pyrol, J. Agric. Food Chem. 55(3), 693–699 (2007). https://doi.org/10.1021/jf062013n

    Article  CAS  Google Scholar 

  15. C. Bilbao-Sáinz, R.J. Avena-Bustillos, D.F. Wood, T.G. Williams, T.H. McHugh, J. Agric. Food Chem. 58(6), 3753–3760 (2010). https://doi.org/10.1021/jf9033128

    Article  Google Scholar 

  16. A.R. Patel, K.P. Velikov, Curr. Opin. Colloid Interface Sci. 19(5), 450–458 (2014). https://doi.org/10.1016/j.cocis.2014.08.001

    Article  CAS  Google Scholar 

  17. R. Shukla, M. Cheryan, Ind. Crop. Prod. 13(3), 171–192 (2001). https://doi.org/10.1016/S0926-6690(00)00064-9

    Article  CAS  Google Scholar 

  18. K.K. Li, S.W. Yin, X.Q. Yang, C.H. Tang, Z.H. Wei, J. Agric. Food Chem. 60(46), 11592–11600 (2012). https://doi.org/10.1021/jf302752v

    Article  CAS  Google Scholar 

  19. H. Chen, Q. Zhong, Food Hydrocoll. 43, 593–602 (2015). https://doi.org/10.1016/j.foodhyd.2014.07.018

    Article  CAS  Google Scholar 

  20. K. Hu, X. Huang, Y. Gao, X. Huang, H. Xiao, D.J. McClements, Food Chem. 182, 275–281 (2015). https://doi.org/10.1016/j.foodchem.2015.03.009

    Article  CAS  Google Scholar 

  21. L.Q. Zou, B.J. Zheng, R.J. Zhang, et al., Food Res. Int. 81, 74–82 (2016). https://doi.org/10.1016/j.foodres.2015.12.035

    Article  CAS  Google Scholar 

  22. P. Oymaci, S.A. Altinkaya, Food Hydrocoll. 54, 1–9 (2016). https://doi.org/10.1016/j.foodhyd.2015.08.030

    Article  CAS  Google Scholar 

  23. A.A. Sapalidis, F.K. Katsaros, T.A. Steriotis, N.K. Kanellopoulos, J. Appl. Polym. Sci. 123(3), 1812–1821 (2012)

    Article  CAS  Google Scholar 

  24. P.K. Jason, Y.K. Jennifer, M.S. Christopher, J.F. Michael, C.H. Donna, Nanotechnology 22(17), 175706 (2011)

    Article  Google Scholar 

  25. D. Passeri, M. Rossi, A. Alippi, et al., Physica E Low Dimens Syst Nanostruct 40(7), 2419–2424 (2008). https://doi.org/10.1016/j.physe.2007.07.012

    Article  CAS  Google Scholar 

  26. O.G. Jones, Curr. Opin. Food Sci. 9, 77–83 (2016)

    Article  Google Scholar 

  27. Q.X. Zhong, M.F. Jin, Food Hydrocoll. 23(8), 2380–2387 (2009). https://doi.org/10.1016/j.foodhyd.2009.06.015

    Article  CAS  Google Scholar 

  28. R. Villalobos, P. Hernández-Muñoz, A. Chiralt, Food Hydrocoll. 20(4), 502–509 (2006). https://doi.org/10.1016/j.foodhyd.2005.04.006

    Article  CAS  Google Scholar 

  29. T.H. McHugh, R. Avena-Bustillos, J.M. Krochta, J. Food Sci. 58(4), 899–903 (1993). https://doi.org/10.1111/j.1365-2621.1993.tb09387.x

    Article  CAS  Google Scholar 

  30. R. Garcia, R. Proksch, Eur. Polym. J. 46, 1897–1906 (2014)

    Google Scholar 

  31. P. Kumar, K.P. Sandeep, S. Alavi, V.D. Truong, J. Food Sci. 76(1), E2–E14 (2011). https://doi.org/10.1111/j.1750-3841.2010.01919.x

    Article  CAS  Google Scholar 

  32. A. Dufresne, J.-Y. Cavaille, W. Helbert, Macromolecules 29(23), 7624–7626 (1996). https://doi.org/10.1021/ma9602738

    Article  CAS  Google Scholar 

  33. X.L. Ji, J.K. Jing, W. Jiang, B.Z. Jiang, Polym. Eng. Sci. 42(5), 983–993 (2002). https://doi.org/10.1002/pen.11007

    Article  CAS  Google Scholar 

  34. X.X. Huang, X.L. Huang, Y.S. Gong, H. Xiao, D.J. McClements, K. Hu, Food Res. Int. 87, 1–9 (2016). https://doi.org/10.1016/j.foodres.2016.06.009

    Article  CAS  Google Scholar 

  35. A.R. Patel, E.C.M. Bouwens, K.P. Velikov, J. Agric. Food Chem. 58(23), 12497–12503 (2010). https://doi.org/10.1021/jf102959b

    Article  CAS  Google Scholar 

  36. Y. Chen, R. Ye, J. Liu, Ind. Crop. Prod. 50, 764–770 (2013). https://doi.org/10.1016/j.indcrop.2013.08.023

    Article  CAS  Google Scholar 

  37. C. J. Cheng and O. G. Jones. 69, 28–35 (2017)

  38. D.J. Sessa, F.J. Eller, D.E. Palmquist, J.W. Lawton, Ind. Crop. Prod. 18(1), 55–65 (2003). https://doi.org/10.1016/S0926-6690(03)00033-5

    Article  CAS  Google Scholar 

  39. P. Kraisit, M. Luangtana-Anan, N. Sarisuta, Adv. Mater. Res. 1060, 107–110 (2015)

    Article  Google Scholar 

  40. N. Dogan, T.H. McHugh, J. Food Sci. 72(1), E16–E22 (2007). https://doi.org/10.1111/j.1750-3841.2006.00237.x

    Article  CAS  Google Scholar 

  41. M.E.J. Dekkers, D. Heikens, J. Appl. Polym. Sci. 28(12), 3809–3815 (1983). https://doi.org/10.1002/app.1983.070281220

    Article  CAS  Google Scholar 

  42. Y. Ou, F. Yang, Z.-Z. Yu, J. Polym. Sci. B Polym. Phys. 36(5), 789–795 (1998)

    Article  CAS  Google Scholar 

  43. B. Pukanszky, G. Vörös, Compos. Interfaces 1(5), 411–427 (1993)

    CAS  Google Scholar 

  44. Y. Nakamura, M. Yamaguchi, M. Okubo, T. Matsumoto, J. Appl. Polym. Sci. 45(7), 1281–1289 (1992). https://doi.org/10.1002/app.1992.070450716

    Article  CAS  Google Scholar 

  45. M. Escamilla-Garcia, G. Calderon-Dominguez, J.J. Chanona-Perez, et al., Int. J. Biol. Macromol. 61, 196–203 (2013). https://doi.org/10.1016/j.ijbiomac.2013.06.051

    Article  CAS  Google Scholar 

  46. K.K. Li, S.W. Yin, X.Q. Yang, C.H. Tang, Z.H. Wei, J. Agric, Food Chem. 60, 11592–11600 (2012). https://doi.org/10.1021/jf302752v

    Article  CAS  Google Scholar 

  47. Y. Guo, Z. Liu, H. An, M. Li, J. Hu, J. Cereal Sci. 41(3), 277–281 (2005). https://doi.org/10.1016/j.jcs.2004.12.005

    Article  CAS  Google Scholar 

  48. P. Kanmani, J.-W. Rhim, Carbohydr. Polym. 106, 190–199 (2014). https://doi.org/10.1016/j.carbpol.2014.02.007

    Article  CAS  Google Scholar 

  49. H. Xu, Y.W. Chai, G.Y. Zhang, J. Agric. Food Chem. 60(40), 10075–10081 (2012). https://doi.org/10.1021/jf302940j

    Article  CAS  Google Scholar 

  50. K. Shi, J.L. Kokini, Q.R. Huang, J. Agric. Food Chem. 57(6), 2186–2192 (2009). https://doi.org/10.1021/jf803559v

    Article  CAS  Google Scholar 

  51. F. Mancarella, J.S. Wettlaufer, Soft Matter 13(5), 945–955 (2017). https://doi.org/10.1039/C6SM02396G

    Article  CAS  Google Scholar 

  52. C. Schmitt, C. Sanchez, S. Desobry-Banon, J. Hardy, Crit. Rev. Food Sci. Nutr. 38(8), 689–753 (1998). https://doi.org/10.1080/10408699891274354

    Article  CAS  Google Scholar 

  53. L. Oliver, L. Berndsen, G.A. van Aken, E. Scholten, Food Hydrocoll. 50, 74–83 (2015). https://doi.org/10.1016/j.foodhyd.2015.04.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Richard Stroshine for assistance in the operation of tensile test measurements and Dr. Lisa Mauer for access to the Dynamic Vapor Sorption Analyzer.

Funding Sources

JG received support from the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1333468. CJC received support from the Industry Fellows program, disbursed from the Department of Food Science at Purdue University. OGJ received support from USDA Hatch Act funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Owen Griffith Jones.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilbert, J., Cheng, C.J. & Jones, O.G. Vapor Barrier Properties and Mechanical Behaviors of Composite Hydroxypropyl Methylcelluose/Zein Nanoparticle Films. Food Biophysics 13, 25–36 (2018). https://doi.org/10.1007/s11483-017-9508-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-017-9508-1

Keywords

Navigation