Skip to main content
Log in

Design of Model Apple Cells Suspensions: Rheological Properties and Impact of the Continuous Phase

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The objective of this work is twofold: to develop a relevant model system to study plant cells suspensions’ rheology and to evaluate the impact of the continuous phase composition and viscosity on the rheological behaviour of apple cells suspensions. Model suspensions of individual or clustered apple cells were developed. Rheological behaviours of both type of suspensions were observed separately, suspending from 0.145 g/100mL to 3.48 g/100mL of particles in five model media and in the original apple serum. Our results show that model suspensions successfully reproduce the rheological behaviour of apple purees, following three concentration domains. In particular, cell clusters greatly reproduce the behaviour of bimodal apple purees, suggesting that clusters dominate the rheological behaviour of the whole puree. One of our main result is that continuous phase does not affect elastic properties of suspensions in the concentrated domain since they are essentially governed by particle interactions: G’ values are similar whatever the continuous phase. If the continuous phase has the main impact on diluted suspensions’ viscosity, its effect becomes smaller as particle concentration increases. A lubricating effect was observed in the concentrated domain for continuous phases containing polymers. Presence of polymers may help in structuring the network in the intermediate domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Adams, W.J. Frith, J.R. Stokes, Influence of particle modulus on the rheological properties of agar microgel suspensions. J. Rheol. 48(6), 1195–1213 (2004)

    Article  CAS  Google Scholar 

  2. I.A.M. Appelqvist, M. Cochet-Broch, A.A.M. Poelman, L. Day, Morphologies, volume fraction and viscosity of cell wall particle dispersions particle related to sensory perception. Food Hydrocoll. 44, 198–207 (2015)

    Article  CAS  Google Scholar 

  3. H.A. Barnes. A handbook of elementary rheology (The University of Wales Institute of Non-Newtonian Fluid Mechanics, Aberystwyth, 2000)

    Google Scholar 

  4. L.M. Barrangou, C.R. Daubert, E.A. Foegeding, Textural properties of agarose gels. I. Rheological and fracture properties. Food Hydrocoll. 20, 184–195 (2006)

    Article  CAS  Google Scholar 

  5. E. Bayod. Microstructural and Rheological Properties of Concentrated Tomato Suspensions during Processing (Lund University, PhD thesis, 2008)

    Google Scholar 

  6. E. Bayod, P. Månsson, F. Innings, B. Bergenståhl, E. Tornberg, Low Shear Rheology of Concentrated Tomato Products. Effect of Particle Size and Time. Food Biophys. 2(4), 146–157 (2007)

    Article  Google Scholar 

  7. N. Carpita, D. Sabularse, D. Montezinos, D.P. Delmer, Determination of the pore size of cell walls of living plant cells. Science. 205, 1144–1147 (1979)

    Article  CAS  Google Scholar 

  8. S. Christiaens, V.B. Mbong, S. Van Buggenhout, C.C. David, J. Hofkens, A.M. Van Loey, M.E. Hendrickx, Influence of processing on the pectin structure–function relationship in broccoli purée. Innovative Food Sci. Emerg. Technol. 15, 57–65 (2012)

    Article  CAS  Google Scholar 

  9. L. Day, M. Xu, S.K. Øiseth, Y. Hemar, L. Lundin, Control of Morphological and Rheological Properties of Carrot Cell Wall Particle Dispersions through Processing. Food Bioproc. Tech. 3(6), 928–934 (2010)

    Article  Google Scholar 

  10. L. Day, M. Xu, S.K. Øiseth, L. Lundin, Y. Hemar, Dynamic rheological properties of plant cell-wall particle dispersions. Colloids Surf. B Biointerfaces. 81(2), 461–467 (2010)

    Article  CAS  Google Scholar 

  11. L. Espinosa. Texture de la purée de pomme : Influence de la structure sur les propriétés rhéologiques et la perception sensorielle - effet du traitement mécanique (PhD thesis, AgroParisTech - Ingénierie Procédés aliments, 2012)

    Google Scholar 

  12. L. Espinosa, N. To, R. Symoneaux, C.M.G.C. Renard, N. Biau, G. Cuvelier, Effect of processing on rheological, structural and sensory properties of apple puree. Procedia Food Science. 1, 513–520 (2011)

    Article  Google Scholar 

  13. L. Espinosa-Muñoz, C.M.G.C. Renard, R. Symoneaux, N. Biau, G. Cuvelier, Structural parameters that determine the rheological properties of apple puree. J. Food Eng. 119(3), 619–626 (2013)

    Article  Google Scholar 

  14. L. Espinosa-Muñoz, R. Symoneaux, C.M.G.C. Renard, N. Biau, G. Cuvelier, The significance of structural properties for the development of innovative apple puree textures. LWT Food Sci. Technol. 49(2), 221–228 (2012)

    Article  Google Scholar 

  15. I.D. Evans, A. lips, Viscoelasticity of Gelatinized Starch Dispersions. J. Texture Stud. 23(1), 69–86 (1992)

    Article  Google Scholar 

  16. Y. Hemar, S. Lebreton, M. Xu, L. Day, Small-deformation rheology investigation of rehydrated cell wall particles–xanthan mixtures. Food Hydrocoll. 25, 668–676 (2011)

    Article  CAS  Google Scholar 

  17. D.M. Heyes, A.C. Brańka, Interactions between microgel particles. Soft Matter. 5, 2681–2685 (2009)

    Article  CAS  Google Scholar 

  18. M.C. Jarvis, S.P.H. Briggs, J.P. Knox, Intercellular adhesion and cell separation in plants. Plant, Cell Environ. 26, 977–989 (2003)

    Article  Google Scholar 

  19. H. Kunzek, H. Opel, B. Senge, Rheological examination of material with cellular structure. Zeitschrift für Lebensmitteluntersuchung und -Forschung A. 205, 193–203 (1997)

    Article  CAS  Google Scholar 

  20. C. Leverrier, G. Almeida, L. Espinosa-Munoz, G. Cuvelier, Influence of Particle Size and Concentration on Rheological Behaviour of Reconstituted Apple Purees. Food Biophys. 11, 235–247 (2016)

    Article  Google Scholar 

  21. C. Leverrier. Relations Structure / Propriétés De Suspensions De Particules Végétales (PhD thesis, Université Paris-Saclay, 2016)

    Google Scholar 

  22. P. Lopez-Sanchez, V. Chapara, S. Schumm, R. Farr, Shear Elastic Deformation and Particle Packing in Plant Cell Dispersions. Food Biophys. 7, 1–14 (2012)

    Article  Google Scholar 

  23. P. Lopez-Sanchez, J. Nijsse, H.C.G. Blonk, L. Bialek, S. Schumm, M. Langton, Effect of mechanical and thermal treatments on the microstructure and rheological properties of carrot, broccoli and tomato dispersions. J. Sci. Food Agric. 91, 207–217 (2011)

    Article  CAS  Google Scholar 

  24. P. Lopez-Sanchez, C. Svelander, L. Bialek, S. Schumm, M. Langton, Rheology and microstructure of carrot and tomato emulsions as a result of high-pressure homogenization conditions . J. Food Sci. 76, E130–E140 (2011)

    Article  CAS  Google Scholar 

  25. K.R.N. Moelants, R. Cardinaels, R.P. Jolie, T.A.J. Verrijssen, S. Van buggenhout, L.M. Zumalacarregui, A.M. Van Loey, P. Moldenaers, M.E. Hendrickx, Relation Between Particle Properties and Rheological Characteristics of Carrot-derived Suspensions. Food Bioproc. Tech. 6(5), 1127–1143 (2013)

    Article  CAS  Google Scholar 

  26. S. Müller, H. Kunzek, Material properties of processed fruit and vegetables I . Effect of extraction and thermal treatment on apple parenchyma. Zeitschrift für Lebensmitteluntersuchung und -Forschung A. 206, 264–272 (1998)

    Article  Google Scholar 

  27. C.B. Rajashekar, A. Lafta, Cell-wall changes and cell tension in response to cold acclimation and exogenous abscisic acid in leaves and cell cultures. Plant Physiol. 111(2), 605–612 (1996)

    Article  CAS  Google Scholar 

  28. M.A. Rao, H.J. Cooley, J.N. Nogueira, M.R. McLellan, Rheology of apple sauce Effect of apple cultivar, firmness, and processing parameters. J. Food Sci. 51(1), 176–179 (1986)

    Article  Google Scholar 

  29. C.M.G.C. Renard, Variability in cell wall preparations: quantification and comparison of common methods. Carbohydr. Polym. 60(4), 515–522 (2005)

    Article  CAS  Google Scholar 

  30. F. Shama, P. Sherman, Identification of stimuli controlling the sensory evaluation of viscosity. II. Oral Methods. J. Texture Stud. 4(1), 111–118 (1973)

    Article  Google Scholar 

  31. H.M. Shewan, J.R. Stokes, Viscosity of soft spherical micro-hydrogel suspensions. J. Colloid Interface Sci. 442, 75–81 (2015)

    Article  CAS  Google Scholar 

  32. D.N. Sila, S. Van Buggenhout, T. Duvetter, I. Fraeye, A. De Roeck, A. Van Loey, M. Hendrickx, Pectins in Processed Fruits and Vegetables: Part II-Structure-Function Relationships. Compr. Rev. Food Sci. Food Saf. 8(2), 86–104 (2009)

    Article  CAS  Google Scholar 

  33. P.A.M. Steeneken, Rheological properties of aqueous suspensions of swollen starch granules. Carbohydr. Polym. 11(1), 23–42 (1989)

    Article  CAS  Google Scholar 

  34. J.R. Stokes, L. MacAkova, A. Chojnicka-Paszun, C.G. De kruif, H.H.J. De Jongh, Lubrication, adsorption, and rheology of aqueous polysaccharide solutions. Langmuir. 27(7), 3474–3484 (2011)

    Article  CAS  Google Scholar 

  35. S. Vetter, H. Kunzek, The influence of suspension solution conditions on the rehydration of apple cell wall material. Eur. Food Res. Technol. 216, 39–45 (2003)

    Article  CAS  Google Scholar 

  36. S. Vetter, H. Kunzek, The influence of the pre-drying treatment on the hydration properties of dried cell wall materials from apples. Eur. Food Res. Technol. 216, 129–137 (2003)

    Article  CAS  Google Scholar 

  37. S. Vetter, H. Kunzek, B. Senge, The influence of the pre-treatment of apple cell wall samples on their functional properties. Eur. Food Res. Technol. 212(6), 630–635 (2001)

    Article  CAS  Google Scholar 

  38. K.W. Waldron, M.L. Parker, A.C. Smith, Plant cell walls and food quality. Compr. Rev. Food Sci. Food Saf. 2, 128–146 (2003)

    Article  Google Scholar 

  39. Y. Yan, Z. Zhang, J.R. Stokes, Q.Z. Zhou, G.H. Ma, M.J. Adams, Mechanical characterization of agarose micro-particles with a narrow size distribution. Powder Technol. 192(1), 122–130 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement number 311754. We would also like to thank Gabrielle Moulin and Serife Kaymaz for their technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard Cuvelier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leverrier, C., Almeida, G., Menut, P. et al. Design of Model Apple Cells Suspensions: Rheological Properties and Impact of the Continuous Phase. Food Biophysics 12, 383–396 (2017). https://doi.org/10.1007/s11483-017-9494-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-017-9494-3

Keywords

Navigation