Skip to main content

Advertisement

Log in

Positive Correlation Between the Expression of inlA and inlB Genes of Listeria monocytogenes and Its Attachment Strength on Glass Surface

  • Original Article
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Previous research involving internalin A (inlA) and internalin B (inlB) single- and double-knockout mutants of Listeria monocytogenes has suggested the involvement of two surface proteins, InlA and InlB, in the adherence of the cells to a glass surface. This phenomenon was further investigated with a larger number (n = 27) of L. monocytogenes wild-type strains that were isolated from catfish processing plants and catfish fillets, in addition to internal controls, one ATCC 7644 strain, and L. monocytogenes EGDe strain. Of the wild-type strains, three were shown to produce truncated forms of InlA protein. A blot succession method was used to measure the ease of detachment of sessile L. monocytogenes from a glass surface after attachment at 4 °C for 8 h. Real-time reverse transcriptase polymerase chain reaction was used to quantitate mRNA levels of inlA and inlB in L. monocytogenes strains after the cells were incubated at 4 °C for 8 h. An inverse relationship between the ease of cell removal from glass surface and the relative inlA and inlB mRNA levels with R 2 value of 0.664 and 0.431, respectively, was observed. This suggests that the attachment strength of L. monocytogenes on glass surface is positively correlated with inlA and inlB expression. There were no differences (p > 0.05) in attachment strength among serotypes. These results suggest that L. monocytogenes InlA and InlB proteins play a role in adherence to a glass surface at low temperature, and the attachment ability is independent of serotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J. McLauchlin, Epidermiol. Infect. 104, 181–189 (1990)

    Article  CAS  Google Scholar 

  2. J. McLauchlin, Epidermiol. Infect. 104, 191–201 (1990)

    Article  CAS  Google Scholar 

  3. A. Schuchat, B. Swaminathan, C.V. Broome, Clin. Microbiol. Rev. 4, 169–183 (1991)

    CAS  Google Scholar 

  4. H. Hof, FEMS Immuno. Med. Microbiol. 35, 199–202 (2003)

    Article  CAS  Google Scholar 

  5. J. Weis, H.P. Seeliger, Appl. Microbiol. 30, 29–32 (1975)

    CAS  Google Scholar 

  6. M.T. Destro, M.F. Leitao, J.M. Farber, Appl. Environ. Microbiol. 62, 705–711 (1996)

    CAS  Google Scholar 

  7. K.K. Nightingale, Y.H. Schukken, C.R. Nightingale, E.D. Fortes, A.J. Ho, Z. Her, Y.T. Grohn, P.L. McDonough, M. Wiedmann, Appl. Environ. Microbiol. 70, 4458–4467 (2004)

    Article  CAS  Google Scholar 

  8. C.H. Hansen, B.F. Vogel, L. Gram, J. Food Prot. 69, 2113–2122 (2006)

    Google Scholar 

  9. Y. Hu, K. Gall, A. Ho, R. Ivanek, Y.T. Grohn, M. Wiedmann, J. Food Prot. 69, 2123–2133 (2006)

    Google Scholar 

  10. C.H. Chou, J.L. Silva, C. Wang, J. Food Prot. 69, 815–819 (2006)

    CAS  Google Scholar 

  11. S.M. George, B.M. Lund, T.F. Brocklehurst, Lett. Appl. Microbiol. 6, 153–156 (1988)

    Article  Google Scholar 

  12. M. Cole, M. Jones, C. Holyoak, J. Appl, Bacteriol. 69, 63–72 (1990)

    CAS  Google Scholar 

  13. T. Jemmi, S.I. Pak, M.D. Salman, Prev. Vet. Med. 54, 25–36 (2002)

    Article  Google Scholar 

  14. A.A. Mafu, D. Roy, J. Goulet, P. Magny, J. Food Prot. 53, 742–746 (1990)

    CAS  Google Scholar 

  15. L.M. Smoot, M.D. Pierson, J. Food Prot. 61, 1286–1292 (1998)

    CAS  Google Scholar 

  16. M.W. LeChevallier, C.D. Cawthon, R.G. Lee, Appl. Environ. Microbiol. 54, 649–654 (1988)

    CAS  Google Scholar 

  17. J.T. Holah, C. Higgs, S. Robinson, D. Worthington, H. Spenceley, Lett. Appl. Microbiol. 11, 255–260 (1990)

    Article  Google Scholar 

  18. C. Arizcun, C. Vasseur, J.C. Labadie, J. Food Prot. 61, 731–734 (1997)

    Google Scholar 

  19. A.B. Ronner, A.C.L. Wong, J. Food Prot. 56, 750–758 (1993)

    CAS  Google Scholar 

  20. T.M. Mosteller, J.R. Bishop, J. Food Prot. 56, 34–41 (1993)

    CAS  Google Scholar 

  21. J.T. Walker, J. Rogers, C.W. Keevil, Biofouling 8, 47–53 (1994)

    Article  CAS  Google Scholar 

  22. S.H. Flint, J.D. Brooks, P.J. Bremer, J. Appl, Microbiol. 83, 508–517 (1997)

    CAS  Google Scholar 

  23. S.G. Parkar, S.H. Flint, J.S. Palmer, J.D. Brooks, J. Appl, Microbiol. 90, 901–908 (2001)

    CAS  Google Scholar 

  24. T.-K. Kim, J.L. Silva, J. Rapid Meth, Auto. 13, 127–133 (2005)

    Google Scholar 

  25. H. Bierne, P. Cossart, Microbiol. Mol. Biol. Rev. 71, 3357–3367 (2007)

    Article  Google Scholar 

  26. B.Y. Chen, T.J. Kim, Y.-S. Jung, J.L. Silva, Food Biophys. 3, 329–332 (2008)

    Article  Google Scholar 

  27. S.V. Bush, C.W. Donnelly, Appl. Environ. Microbiol. 58, 14–20 (1992)

    Google Scholar 

  28. A. Bubert, I. Hein, M. Rauch, A. Lehner, B. Yoon, W. Goebel, M. Wagner, Appl. Environ. Microbiol. 65, 4688–4692 (1999)

    CAS  Google Scholar 

  29. A.A. Mafu, D. Roy, J. Goulet, L. Savoie, Appl. Environ. Microbiol. 57, 1969–1973 (1991)

    CAS  Google Scholar 

  30. P. Teixeira, J. Lima, J. Azeredo, R. Oliveira, Int. J. Food Sci. Technol. 43, 1239–1244 (2008)

    Article  CAS  Google Scholar 

  31. P.J. Eginton, H. Gibson, J. Holah, P.S. Handley, P. Gilbert, J. Ind, Microbiol. 15, 305–310 (1995)

    CAS  Google Scholar 

  32. G. Midelet, A. Kobilinsky, B. Carpentier, Appl. Environ. Microbiol. 72, 2313–2321 (2006)

    Article  CAS  Google Scholar 

  33. U.K. Laemmli, Nature 227, 680–685 (1970)

    Article  CAS  Google Scholar 

  34. Y.-S. Jung, Y.-M. Kwon, Curr. Microbiol. 57, 593–597 (2008)

    Article  CAS  Google Scholar 

  35. B.-S. Park, Y.-M. Kwon, R. Pyla, J.A. Boyle, Y.-S. Jung, FEMS Microbiol. Lett. 273, 244–252 (2007)

    Article  CAS  Google Scholar 

  36. H. Werbrouck, K. Grijspeerdt, N. Botteldoorn, E.V. Pamel, N. Rijpens, J.V. Damme, M. Uyttendaele, L. Herman, E.V. Coillie, Appl. Environ. Microbiol. 72, 3862–3871 (2006)

    Article  CAS  Google Scholar 

  37. M.W. Pfaffl, Nucleic Acids Res. 29, 2002–2007 (2001)

    Article  Google Scholar 

  38. SAS Institute, SAS Institute, Cary (2001)

  39. K.K. Nightingale, K. Windham, K.E. Martin, M. Yeung, M. Wiedmann, Appl. Environ. Microbiol. 71, 8764–8772 (2005)

    Article  CAS  Google Scholar 

  40. K.K. Nightingale, R.A. Ivy, A.J. Ho, E.D. Fortes, B.L. Njaa, R.M. Peters, M. Wiedmann, Appl. Environ. Microbiol. 74, 6570–6583 (2008)

    Article  CAS  Google Scholar 

  41. T.J. Kim, Y.-S. Jung, J.L. Silva, S. Danviriyakul, Food Biotechnol. 21, 161–168 (2007)

    Article  CAS  Google Scholar 

  42. P.J. Eginton, J. Holah, D.G. Allison, P.S. Handley, P. Gilbert, Lett. Appl. Microbiol. 27, 101–105 (1998)

    Article  CAS  Google Scholar 

  43. P. McGann, R. Ivanek, M. Wiedmann, K.J. Boor, Appl. Environ. Microbiol. 73, 2806–2814 (2007)

    Article  CAS  Google Scholar 

  44. A. Lingnau, E. Domann, M. Hudel, M. Bock, T. Nichterlein, J. Wehland, T. Chakraborty, Infect. Immuni. 63, 3896–3903 (1995)

    CAS  Google Scholar 

  45. B.G. Gellin, C.V. Broome, J. Am, Med. Assoc. 261, 1313–1320 (1989)

    Article  CAS  Google Scholar 

  46. H. Gorski, J.D. Palumbo, R.E. Mandrell, Appl. Environ. Microbiol. 69, 258–266 (2003)

    Article  CAS  Google Scholar 

  47. T.C. Ells, L.T. Hansen, Int. J. Food Microbiol. 111, 34–42 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Dr. Jeff Wilkinson for allowing us to use the Lightcycler® 2.0. This paper was approved for publication as Journal Article No. J-11634 of the Mississippi Agricultural and Forestry Experiment Station (MAFES), Mississippi State University. This work was supported in part by MAFES Project Numbers MIS-371272 and 401090 and by USDA-ARS Grant No. 58-0790-5-137 and by a grant from MAFES SRI.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tae-Jo Kim or Yean-Sung Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, BY., Kim, TJ., Silva, J.L. et al. Positive Correlation Between the Expression of inlA and inlB Genes of Listeria monocytogenes and Its Attachment Strength on Glass Surface. Food Biophysics 4, 304–311 (2009). https://doi.org/10.1007/s11483-009-9128-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-009-9128-5

Keywords

Navigation