Skip to main content
Log in

Stability of Biopolymer Particles Formed by Heat Treatment of β-lactoglobulin/Beet Pectin Electrostatic Complexes

  • Special Issue Article
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The purpose of this study was to examine the stability of biopolymer particles formed by heating electrostatic complexes of β-lactoglobulin and sugar beet pectin together (pH 5, 80 °C for 15 min). The effects of electrostatic interactions on the formation and stability of the particles were investigated by incorporation of different salt levels (0 to 200 mM NaCl) during the preparation procedure. Biopolymer particles were characterized by turbidity, electrophoretic mobility, dynamic light scattering, and visual observance. Salt inclusion (≥25 mM) prior to heating β-lactoglobulin/pectin complexes led to the formation of large biopolymer particles (d > 1,000 nm) that rapidly sedimented, but salt inclusion after heating (0 to 200 mM) led to the formation of biopolymer particles that remained relatively small (d < 350 nm) and were stable to sedimentation. The biopolymer particles formed in the absence of salt remained stable over a wide range of pH values (e.g., pH 3 to 7 in the presence of 200 mM NaCl). These biopolymer particles may therefore be suitable for application in a number of food products as delivery systems, clouding agents, or texture modifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L.Y. Chen, G.E. Remondetto, M. Subirade, Trends Food Sci Technol 17(5), 272–283 (2006)

    Article  CAS  Google Scholar 

  2. A. Benichou, A. Aserin, N. Garti, J Disper Sci Technol 23(1–3), 93–123 (2002)

    CAS  Google Scholar 

  3. J. Ubbink, J. Kruger, Trends Food Sci Tech 17(5), 244–254 (2006)

    Article  CAS  Google Scholar 

  4. A.Y. Tamime, M. Kalab, D.D. Muir, E. Barrantes, J Soc Dairy Technol 48(4), 107–111 (1995)

    Article  CAS  Google Scholar 

  5. T. Janhoj, C.B. Petersen, M.B. Frost, R. Ipsen, J Texture Stud 37(3), 276–299 (2006)

    Article  Google Scholar 

  6. T. Janhoj, R. Ipsen, Milchwissenschaft-Milk Science International 61(2), 131–134 (2006)

    Google Scholar 

  7. C. Lobato-Calleros, O. Martinez-Torrijos, O. Sandoval-Castilla, J.P. Perez-Orozco, E.J. Vernon-Carter, Int Dairy J 14(9), 777–782 (2004)

    Article  CAS  Google Scholar 

  8. D.J. McClements, Biotechnol Adv 24(6), 621–625 (2006)

    Article  CAS  Google Scholar 

  9. V. Tolstoguzov, Crit Rev Biotechnol 22(2), 89–174 (2002)

    Article  CAS  Google Scholar 

  10. V. Tolstoguzov, Food Hydrocoll 17(1), 1–23 (2003)

    Article  CAS  Google Scholar 

  11. C.L. Cooper, P.L. Dubin, A.B. Kayitmazer, S. Turksen, Curr Opin Colloid Interface Sci 10(1–2), 52–78 (2005)

    Article  CAS  Google Scholar 

  12. C. Schatz, A. Domard, C. Viton, C. Pichot, T. Delair, Biomacromolecules 5(5), 1882–1892 (2004)

    Article  CAS  Google Scholar 

  13. M. Alonso-Sande, M. Cuna, C. Remunan-Lopez, Macromolecules 39(12), 4152–4158 (2006)

    Article  CAS  Google Scholar 

  14. Y.H. Hong, D.J. McClements, J Agric Food Chem 55(14), 5653–5660 (2007)

    Article  CAS  Google Scholar 

  15. S.Y. Yu, J.H. Hu, X.Y. Pan, P. Yao, M. Jiang, Langmuir 22(6), 2754–2759 (2006)

    Article  CAS  Google Scholar 

  16. L. Donato, C. Garnier, B. Novales, J.L. Doublier, Food Hydrocoll 19(3), 549–556 (2005)

    Article  CAS  Google Scholar 

  17. Q. Wang, K.B. Qvist, Food Res Int 33(8), 683–690 (2000)

    Article  Google Scholar 

  18. M. Girard, C. Sanchez, S.I. Laneuville, S.L. Turgeon, S.E. Gauthier, Colloids Surf, B Biointerfaces 35(1), 15–22 (2004)

    Article  CAS  Google Scholar 

  19. M. Girard, S.L. Turgeon, S.F. Gauthier, Food Hydrocoll 16(6), 585–591 (2002)

    Article  CAS  Google Scholar 

  20. M. Girard, S.L. Turgeon, S.F. Gauthier, J Agric Food Chem 51(20), 6043–6049 (2003)

    Article  CAS  Google Scholar 

  21. M. Girard, S.L. Turgeon, S.F. Gauthier, J Agric Food Chem 51(15), 4450–4455 (2003)

    Article  CAS  Google Scholar 

  22. E. Seyrek, P.L. Dubin, C. Tribet, E.A. Gamble, Biomacromolecules 4(2), 273–282 (2003)

    Article  CAS  Google Scholar 

  23. F. Weinbreck, R. de Vries, P. Schrooyen, C.G. de Kruif, Biomacromolecules 4(2), 293–303 (2003)

    Article  CAS  Google Scholar 

  24. M.A.M. Hoffmann, S. Roefs, M. Verheul, P. VanMil, K.G. DeKruif, J Dairy Res 63(3), 423–440 (1996)

    Article  Google Scholar 

  25. M.A.M. Hoffmann, P. van Mil, J Agric Food Chem 47(5), 1898–1905 (1999)

    Article  CAS  Google Scholar 

  26. M. Verheul, S. Roefs, J Agric Food Chem 46(12), 4909–4916 (1998)

    Article  CAS  Google Scholar 

  27. M. Verheul, S. Roefs, K.G. de Kruif, J Agric Food Chem 46(3), 896–903 (1998)

    Article  CAS  Google Scholar 

  28. W.G.T. Willats, P. Knox, J.D. Mikkelsen, Trends Food Sci Technol 17(3), 97–104 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the Cooperative State Research, Extension, Education Service, United States Department of Agriculture, Massachusetts Agricultural Experiment Station and a United States Department of Agriculture, CREES, NRI Grant (Award Number 2005-01357).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Owen G. Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, O.G., McClements, D.J. Stability of Biopolymer Particles Formed by Heat Treatment of β-lactoglobulin/Beet Pectin Electrostatic Complexes. Food Biophysics 3, 191–197 (2008). https://doi.org/10.1007/s11483-008-9068-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-008-9068-5

Keywords

Navigation