Skip to main content
Log in

Formulation and Characterization of Phytophenol-Carrying Antimicrobial Microemulsions

  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Phytophenols were solubilized in nonionic surfactant micelles to form antimicrobially active and thermodynamically stable microemulsions. Formulation of phytophenols in microemulsions has previously been shown to improve their antimicrobial activity in model microbiological and food systems. Carvacrol and eugenol were incorporated in micellar solutions of two nonionic surfactants (Surfynol® 485W and Surfynol® 465) by mixing at room temperature. Particle size of formed microemulsions was determined by dynamic light scattering, and structural information about the mixed micellar system was obtained by nuclear magnetic resonance spectroscopy (NMR). Uptake of carvacrol and eugenol in surfactant micelles as determined by ultrasonic velocity measurements was very rapid, e.g., below the maximum additive concentration, the phytophenols were completely solubilized in the micelles in less than 30 min. Depending on the surfactant–phytophenol combination, the self-assembled surfactant–phytophenol aggregates had mean particle diameters between 3 and 17 nm. Elucidation of the structure of aggregates by 1H NMR studies indicated that micelles had a “bracket-like” structure with phytophenols being located inside the palisade layer of the micelle in direct contact with adjacent surfactant monomers. Encapsulation of phytophenols in surfactant micelles enables the incorporation of large amounts of hydrophobic antimicrobials in aqueous phases. Formulation of antimicrobial microemulsions may thus offer a means to deliver high concentrations of phytophenols to the bacterial surfaces of foodborne pathogens to affect kill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L.A. Shelef, Antimicrobial Effect of Spices J. Food Saf 6, 29–44 (1983)

    Article  Google Scholar 

  2. A.L. Branen, P.M. Davidson, Antimicrobials in Food (Marcel Decker, New York (1993)

    Google Scholar 

  3. S. Oka, Mechanism of antimicrobial effect of various food preservatives International Symposium of Food Microbiology 4, 3–16 (1964)

    Google Scholar 

  4. S. Miyagashi, W. Akasohu, T. Hashimoto, T. Asakawa, Effect of NaCl on aggregation number, microviscosity, and CMC of N-Dodecanoyl amino acid surfactant Micelles J. Colloid Interface Sci 184, 527–534 (1996)

    Article  Google Scholar 

  5. S. Kumar, V.K. Aswal, H.N. Singh, P.S. Goyal, K. Din, Growth of sodium dodecyl sulfate micelles in the presence of n-octylamine Langmuir 10, 4069–4072 (1996)

    Article  Google Scholar 

  6. R.G. Alargova, J. Ptkov, D. Petsev, I.B. Ivanov, G. Broze, A. Mehreteab, Light scattering study of sodium dodecyl polyoxyethylene-2-sulfate micelles in presence of multivalent counterions Langmuir 11, 1530–1536 (1995)

    Article  CAS  Google Scholar 

  7. A. Hereida, M.J. Bukovac, Interaction between 2-(1-Naphtyl)acetic and micelles of nonionic surfactant in aqueous solutions J. Agric. Food Chem 40, 2290–2293 (1992)

    Article  Google Scholar 

  8. J.N. Coupland, J. Weiss, A. Lovy, D.J. McClements, Solubilization kinetics of triacyl glycerol and hydrocarbon emulsion droplets in a micellar solution J. Food Sci 61(6), 1114–1117 (1996)

    Article  CAS  Google Scholar 

  9. J. Texter, Characterization of Surfactants (Hansen, Cincinnati Ohio (1999), 1–2

    Google Scholar 

  10. J. Weiss, D.J. McClements, Mass Transport Phenomena in Oil-in-Water Emulsions Containing Surfactant Micelles: Solubilization Langmuir 16, 5879–5883 (2000)

    Article  CAS  Google Scholar 

  11. N.C. Christov, N.D. Denkov, P.A. Kralchevsky, G. Broze, A. Mehreteab, Kinetics of Triglyceride Solubilization by Micellar Solutions of Nonionic Surfactant and Triblock Copolymer. 1. Empty and Swollen Micelles Langmuir 18(21), 7880–7886 (2002)

    Article  CAS  Google Scholar 

  12. S.R. Dungan, B.H. Tai, N.I. Gerhardt, Transport Mechanism in the Micellar Solubilization of Alkanes in Oil-in-Water Emulsions Colloids Surf., A Physicochem. Eng. Asp 216, 149–166 (2003)

    Article  CAS  Google Scholar 

  13. D. Sailaja, K.L. Suhasini, S. Kumar, K.S. Gandhi, Theory of Rate of Solubilization into Surfactant Solutions Langmuir 19, 4014–4026 (2003)

    Article  CAS  Google Scholar 

  14. N. Nishikido, A Simple Rule for Describing the Composition Dependence of the Aggregation Number of Solubilized Micelles J. Colloid Interface Sci 131(2), 440–447 (1989)

    Article  CAS  Google Scholar 

  15. G. Cerichelli, Role of counterions in the solubilization of bezene by cetyltrimethylammonium aggregates. A multinuclear NMR investigation Langmuir 16, 182–187 (2000)

    Article  CAS  Google Scholar 

  16. E.M.B.D. Sousa, O. Chiavone-Filho, M.T. Moreno, D.N. Silva, M.O.M. Marques, M.A.A. Meireles, Experimental Results for the Extraction of Essential Oils From Lippia sidoides Using Pressurized Carbon Dioxide Braz. J. Chem. Eng 19(2), 28–39 (2002)

    Article  Google Scholar 

  17. D.M. Parees, S.D. Hanton, P.A.C. Clark, D.A. Willcox, Comparison of Mass Spectrometric Techniques for Generating Molecular Weight Information on a Class of Ethoxylated Oligomers J. Am. Soc. Mass Spectrom 9, 282–291 (1998)

    Article  CAS  Google Scholar 

  18. S. Nishikawa, H. Huang, Volumetric properties of surfactant in water and in mixed solvent from sound velocity and density measurements Bull. Chem. Soc. Jpn 75(6), 1215–1221 (2002)

    Article  CAS  Google Scholar 

  19. S. Nishikawa, M. Kondo, Kinetic study for the inclusion complex of carboxylic acids with cyclodextrin by the ultrasonic relaxation method J. Phys. Chem. B 110(51), 26143–36147 (2006)

    Article  CAS  Google Scholar 

  20. S. Nishikawa, F. Matsuo, Dynamic Study of Aqueous Solutions of 2-Propanol and Ethanol in the Presence of Anionic and Cationic Surfactants By Ultrasonic Methods J. Phys. Chem 95(1), 437–444 (1991)

    Article  CAS  Google Scholar 

  21. J. Weiss, J.N. Coupland, D. Brathwaite, D.J. McClements, Influence of molecular structure of hydrocarbon emulsion droplets on their solubilization in nonionic surfactant micelles Colloids Surf. A 121, 53–60 (1997)

    Article  CAS  Google Scholar 

  22. J. Weiss, J.N. Coupland, D.J. McClements, Solubilization of hydrocarbon emulsion droplets suspended in nonionic surfactant micelle solutions J. Phys. Chem 100, 1066–1071 (1996)

    Article  CAS  Google Scholar 

  23. J. Weiss, D.J. McClements, Mass Transport Phenomena in Oil-in-Water Emulsions Containing Surfactant Micelles: Solubilization Langmuir 16(14), 5879–5883 (2000)

    Article  CAS  Google Scholar 

  24. M.J. Rosen, Surfactant and Interfacial Phenomena, 3rd edn. (Wiley-Interscience, New York, New York (2004)

    Google Scholar 

  25. P.C. Griffiths, E. Pettersson, P. Stilbs, A.Y.F. Cheung, A.M. Howe, A.R. Pitt, Electrophoretic Nuclear Magnetic Resonance Studies of Mixed Anionic-Nonionic Surfactant Micelles Langmuir 17, 7178–7181 (2001)

    Article  CAS  Google Scholar 

  26. K.H. Lee, S.Y. Shin, J.Y. Hong, S.S. Yang, J. Kim, K. Hahm, Y. Kim, Solution Structure of Termite Derived Antimicrobial Peptide, Spinigerin as Determined in SDS Micelle by NMR Spectroscopy Biochemical and Biophysical Research Communications 309, 591–597 (2003)

    Article  CAS  Google Scholar 

  27. N. Onoda-Yamamuro, O. Yamamuro, N. Tanaka, H. Nomura, NMR and neutron scattering studies on spherical and rod-like micelles of dodecyltrimethylammonium bromide in aqueous sodium salicylate solutions J. Mol. Liq 117, 139–145 (2005)

    Article  CAS  Google Scholar 

  28. O. Soderman, P. Stilbs, W.S. Price, NMR Studies of Surfactants Concepts Magn. Reson 23A(2), 121–135 (2004)

    Article  Google Scholar 

  29. V. Suratkar, S. Mahapatra, Solubilization Site of Organic Perfume Molecules in Sodium Dodecyl Sulfate Micelles: New Insights from Proton NMR Studies J. Colloid Interface Sci 225, 32–38 (2000)

    Article  CAS  Google Scholar 

  30. M.N. Triba, M. Traikia, D.E. Warschawski, L. Nicolas-Morgantini, A. Lety, P. Gilard, P.F. Devaux, Proton Magnetic-Angle Spinning-NMR Investigation of Surfactant Aqueous Suspensions J. Colloid Interface Sci 274, 341–345 (2004)

    Article  CAS  Google Scholar 

  31. X.Y. Yang, X. Tan, G.Z. Cheng, H.S. Yuan, S.Z. Mao, S. Zhao, J.Y. Yu, Y.R. Du, Mixed Micelles of Sodium 4-Decyl Naphthalene Sulfonate with Triton X-100 and Sodium Dodecyl Sulfonate Analyzed by 1H NMR J. Colloid Interface Sci 279, 533–538 (2004)

    Article  CAS  Google Scholar 

  32. J.W. McBain, P.H. Richards, Solubilization of Insoluble Organic Liquids by Detergents Ind. Eng. Chem 38(6), 642–646 (1946)

    Article  CAS  Google Scholar 

  33. Y. Saito, M. Abe, T. Sato, Solubilization Behavior of n-Octadecane and n-Octanol in Polyethylated Nonionic Surfactants Journal of the American Oil Chemical Society 70(7), 717–721 (1993)

    Article  CAS  Google Scholar 

  34. F. Tokiwa, Solubilization Behavior of Mixed Surfactant Micelles in Connection with their Zeta Potentials J. Colloid Interface Sci 28(1), 145(1986)

    Article  Google Scholar 

  35. M.-P. Nieh, S.K. Kumar, R.H. Fernando, R.H. Colby, J. Katsaras, Effect of the Hydrophilic Size on the Structural Phases of Aqueous Nonionic Gemini Surfactant Solutions Langmuir 20, 9061–9068 (2004)

    Article  CAS  Google Scholar 

  36. J. Weiss, Mass Transport Phenomena in Oil-in-Water Emulsions Containing Surfactant Micelles Ph.D. (University of Massachusetts, Amherst (1999)

    Google Scholar 

  37. P.D. Todorov, P.A. Kralchevsky, N.D. Denkov, N.D. Broze, A. Mehreteab, Kinetics of Solubilization of n-Decane and Benzene by Micellar Solutions of Sodium Dodecyl Sulfate J. Colloid Interface Sci 245, 371–382 (2002)

    Article  CAS  Google Scholar 

  38. D.P. Acharya, H. Kundeida, Wormlike Micelles in Mixed Surfactant Solutions Adv Colloid Interface Sci 123–126, 401–413 (2006)

    Article  Google Scholar 

  39. C. Rodriguez-Abreu, K. Aramaki, Y. Tanaka, M.A. Lopez-Quintela, M. Ishitobi, H. Kunieda, Wormlike Micelles and Microemulsions in Aqueous Mixtures of Sucrose Esters and Nonionic Cosurfactants J. Colloid Interface Sci 291(2), 560–569 (2005)

    Article  CAS  Google Scholar 

  40. K.B. Holmberg, B. Jonsson, B. Kronberg, B. Lindman, Surfactants and Polymers in Aqueous Solutions, 2nd edn. (Wiley, New York, NY (2003)

    Google Scholar 

  41. G.D. Phillies, R.H. Hunt, K. Strang, N. Suchkin, Aggregation Number and Hydrodynamic Hydration Levels of Brij-35 Micelles from Optical Probe Studies Langmuir 11, 3408–3416 (1995)

    Article  CAS  Google Scholar 

  42. P.A. FitzGerald, T.W. Davey, G.G. Warr, Micellar Structure in Gemini Nonionic Surfactants from Small-Angle Neutron Scattering Langmuir 21, 7121–7128 (2005)

    Article  CAS  Google Scholar 

  43. Y. Tokuoka, H. Uchiyama, M. Abe, Phase diagrams of surfactant/water/synthetic perfume systems Colloid Polym. Sci 272, 317–323 (1993)

    Article  Google Scholar 

  44. S. Gaysinsky, P.M. Davidson, B.D. Bruce, J. Weiss, Stability and Antimicrobial Efficiency of Eugenol Encapsulated in Surfactant Micelles as Affected by Temperature and pH J. Food Prot 68(7), 1359–1366 (2005)

    CAS  Google Scholar 

  45. K. Toerne, R. Rogers, R. Von Wandruszka, Thermal Stability of Nonionic Surfactant Aggregates Langmuir 17, 6119–6121 (2001)

    Article  CAS  Google Scholar 

  46. A. Remmal, T. Bouchikhi, K. Rhayour, M. Ettayebi, Improved Method for the Determination of Antimicrobial Activity of Essential Oils in Agar Medium J. Essent Oil Res 5, 179–184 (1993)

    CAS  Google Scholar 

  47. J.C. Russell, U.P. Wild, D.G. Whitten, The Heptanol Swollen Micelle: Fluorescence and Absorbance Probe Studies of Size Solubilization Properties J. Phys. Chem 90, 1319–1323 (1986)

    Article  CAS  Google Scholar 

  48. K. Bijma, B.F.N. Engberts, Effect of Counterions on Properties of Micelles Formed by Alkylpyridinum Surfactants. 1. Conductometry and 1H-NMR Chemical Shifts Langmuir 13, 4843–4849 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Dr. Nitin Jain at the University of Tennessee for his help with the interpretation on the NMR data. The study was supported by a USDA NRI grant (2004-3521-14120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Weiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaysinsky, S., Davidson, P.M., McClements, D.J. et al. Formulation and Characterization of Phytophenol-Carrying Antimicrobial Microemulsions. Food Biophysics 3, 54–65 (2008). https://doi.org/10.1007/s11483-007-9048-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-007-9048-1

Keywords

Navigation