Skip to main content
Log in

Characterization of the Physical State of Spray-Dried Inulin

  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Modulated differential scanning calorimetry, wide angle x-ray scattering, and environmental scanning electron microscopy were used to investigate the physical and morphological properties of chicory root inulin spray dried under different conditions. When the feed temperature increased up to 80 °C, the average degree of polymerization of the solubilized fraction increased, leading to a higher glass transition temperature (Tg). Above 80 °C, the samples were completely amorphous, and the Tg did not change. The starting material was semicrystalline, and the melting region was composed of a dual endotherm; the first peak subsided as the feed temperature increased up to a temperature of 70 °C, whereas above 80 °C, no melting peak was observed as the samples were completely amorphous. To a lesser extent, the inlet air temperature of 230 °C allowed a higher amorphous content of the samples than at 120–170 °C but induced a blow-out of the particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. C. Blecker, C. Fougnies, J.C. Van Herck, J.P. Chevalier and M. Paquot, J Agric Food Chem 50, 1602–1607 (2002).

    Article  CAS  Google Scholar 

  2. M.B. Roberfroid and N.M. Delzenne, Annu Rev Nutr 18, 117–143 (1998).

    Article  CAS  Google Scholar 

  3. C. Blecker, J.P. Chevalier, J.C. Van Herck, C. Fougnies, C. Deroanne and M. Paquot, Recent Research Developments in Agricultural & Food Chemistry 5, 125–131 (2001).

    CAS  Google Scholar 

  4. D.E. Oakley, Chem Eng Prog 93, 48–54 (1997).

    CAS  Google Scholar 

  5. O.C. Chidavaenzi, G. Buckton, F. Koosha and R. Pathak, Int J Pharm 159, 67–74 (1997).

    Article  CAS  Google Scholar 

  6. M. Sugimoto, T. Maejima, S. Narisawa, K. Matsubara and H. Yoshino, Int J Pharm 296, 64–72 (2005).

    Article  CAS  Google Scholar 

  7. R. Surana, A. Pyne and R. Suryanarayanan, Pharm Res 21, 1167–1176 (2004).

    Article  CAS  Google Scholar 

  8. R. Parker and S.G. Ring, J Cereal Sci 34, 1–17 (2001).

    Article  CAS  Google Scholar 

  9. J.J. Fitzpatrick, K. Barry, P.S.M. Cerqueira, T. Iqbal, J. O’Neill and Y.H. Roos, Int Dairy J 17, 383–392 (2007).

    Article  CAS  Google Scholar 

  10. S.N. Ronkart, M. Paquot, C. Fougnies, C. Deroanne, J.C. Van Herck and C. Blecker, Talanta 70, 1006–1010 (2006).

    Article  CAS  Google Scholar 

  11. C. Blecker, J.P. Chevalier, C. Fougnies, J.C. Van Herck, C. Deroanne C. and M. Paquot, J Therm Anal Cal 71, 215–224 (2003).

    Article  CAS  Google Scholar 

  12. S. Ronkart, C. Blecker, C. Fougnies, J.C. Van Herck, J. Wouters and M. Paquot, Carbohyd Polym 63, 210–217 (2006).

    Article  CAS  Google Scholar 

  13. H. Xu, B. Seyhan Ince and P. Cebe, J Polym Sci Pol Phys 41, 3026–3036 (2003).

    Article  CAS  Google Scholar 

  14. E.Y. Shalaev and G. Zografi, The concept of structure in amorphous solids from the perspective of the pharmaceutical sciences. In: Progress in Amorphous Food and Pharmaceutical Systems, edited by H. Levine (Royal Society of Chemistry, Cambridge, UK 2002), pp. 11–30.

    Chapter  Google Scholar 

  15. E. Verdonck, K. Schaap, L.C. Thomas, Int J Pharm 192, 3–20 (1999).

    Article  CAS  Google Scholar 

  16. M. Mathlouthi, A.L. Cholli, and J.L. Koenig, Carbohyd Res 147, 1–9 (1986).

    Article  CAS  Google Scholar 

  17. J.F. Mano, J.L. Gómez Ribelles, N.M. Alves and M. Salmerón Sanchez, Polymer 46, 8258–8265 (2005).

    Article  CAS  Google Scholar 

  18. Y. Roos and M. Karel, Biotechnol Prog 7, 49–53 (1991).

    Article  CAS  Google Scholar 

  19. S.Y Hobbs and C.F. Pratt, Polymer 16, 462–465 (1975).

    Article  CAS  Google Scholar 

  20. C. Fougnies, M. Dosière, M.H.J. Koch and J. Roovers, Macromolecules 31, 6266–6274 (1998).

    Article  CAS  Google Scholar 

  21. E.M. Woo, Y.S. Sun and C.P. Yang, Prog Polym Sci 26, 945–983 (2001).

    Article  CAS  Google Scholar 

  22. J. Plans, W.J. MacKnight and F.E. Karasz, Macromolecules 17, 810–814 (1984).

    Article  CAS  Google Scholar 

  23. T Liu, Eur Polym J 39, 1311–1317 (2003).

    Article  CAS  Google Scholar 

  24. P. Srimoaon, N. Dangseeyun and P. Supaphol, Eur. Polym. J. 40, 599–608 (2004).

    Article  CAS  Google Scholar 

  25. C.L.M. Hébette, J.A. Delcour, M.H.J. Koch, K. Booten, R. Kleppinger, N. Mischenko and H. Reynaers, Carbohyd Res 310, 65–75 (1998).

    Article  Google Scholar 

  26. Hébette C, Crystallisation, melting and gel formation of concentrated inulin-water systems. PhD thesis (K.U. Leuven, Belgium 2002).

  27. R.H. Marchessault, T. Bleha, Y. Deslandes and J.F. Revol, Can J Chem 58, 2415–2422 (1980).

    Article  CAS  Google Scholar 

  28. I. André, J.L. Putaux, H. Chanzy, F.R. Taravel, J.W. Timmermans and D. de Wit, Int J Biol Macromol 18, 195–204 (1996a).

    Article  Google Scholar 

  29. I. André, K. Mazeau, I. Tvaroska, J.L. Putaux, W.T. Winter, F.R. Taravel and H. Chanzy, Macromolecules 29, 4626–4635 (1996b).

    Article  Google Scholar 

  30. D.O. Corrigan, A.M. Healy and O.I. Corrigan, Int J Pharm 262, 125–137 (2003).

    Article  CAS  Google Scholar 

  31. N.R. Rabbani and P.C. Seville, J Control Release 110, 130–140 (2005).

    Article  CAS  Google Scholar 

  32. B.H. Graham, Food Austr 49, 184–185 (1997).

    Google Scholar 

  33. R.E.M. Verdurmen, P. Menn, J. Ritzert et al., Dry Technol 22, 1403–1461 (2004).

    Article  Google Scholar 

  34. D.F. Bain, D.L. Munday and A. Smith, J Microencapsul 16, 453–474 (1999).

    Article  CAS  Google Scholar 

  35. F. Iskandar, L. Gradon and K. Okuyama, J Colloid Interf Sci 265, 296–303 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank Mrs. Lynn Doran for technical assistance, Mrs. Bernadette Norberg and Prof. Johan Wouters from the ‘Department of Structural Biological Chemistry’ of the ‘Facultés universitaires Notre Dame de la Paix’ (Namur, Belgium) for the use of the WAXS, and Mrs. Anne-Sophie Quique from Cosucra Groupe Warcoing S.A. for the HPAEC-PAD experiments.

Financial support was provided for this study by the Walloon Region of Belgium (DGTRE) and Cosucra Groupe Warcoing S.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien N. Ronkart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ronkart, S.N., Deroanne, C., Paquot, M. et al. Characterization of the Physical State of Spray-Dried Inulin. Food Biophysics 2, 83–92 (2007). https://doi.org/10.1007/s11483-007-9034-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-007-9034-7

Keywords

Navigation