Skip to main content
Log in

Effect of Compositional Factors against the Thermal Oxidative Deterioration of Novel Food Emulsions

  • Original Research
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

This work attempts to determine any relationship between certain endogenous parameters and the oxidative deterioration of protein-stabilized oil-in-water emulsions. The contribution of compositional factors (e.g., type and amount of emulsifier, fat phase, etc.) is further elucidated. Among 10% cottonseed o/w emulsions prepared by 1% emulsifier (Tween, sodium caseinate, or whey protein), lipid autoxidation (at 40°C) was much faster in the Tween emulsion than in the protein ones, with whey protein presenting a clear antioxidant effect. Increase in protein concentration (0.5–2% w/w) led to a decrease in droplet size but an increase in oxidative stability, in terms of conjugated diene hydroperoxides formation at 232 nm. The type of lipid phase significantly affected the rate of thermal oxidation at 60°C. In the most oxidatively vulnerable sunflower-oil-based emulsions, an increase in fat content (10–40%) resulted in a reduction of oxidative deterioration. By selecting a more concentrated emulsion (20% o/w, 2% emulsifier), in order to structurally approach real novel food products, any influence of the composition of the emulsifier (combination of Tween and sodium caseinate preparation) was subsequently tested. An increase in protein proportion in the emulsifier was found to inhibit proportionally the oxidative instability of the emulsions, as evaluated by the determination of both primary (conjugated diene and lipid hydroperoxides) and secondary [thiobarbituric acid-reactive substances (TBARS)] oxidation products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Fig. 2.
Fig. 3.
Figure 4.

Similar content being viewed by others

References

  1. D.J. McClements and E.A. Decker, J Food Sci 65, 1270–1282 (2000)

    Article  CAS  Google Scholar 

  2. W.W. Nawar, In: Food Chemistry, 3rd ed, edited by O. Fennema (Marcel Dekker, New York, 1996)

    Google Scholar 

  3. L. Ponginebbi, W.W. Nawar and P. Chinachoti, JAOCS 76, 131–136 (1996)

    Google Scholar 

  4. H.T. Osborn and C.C. Akoh, Food Chemistry 84, 451–456 (2004)

    Article  CAS  Google Scholar 

  5. J.N. Coupland and D.J. McClements, Trends Food Sci Technol 7, 83–91 (1996)

    Article  CAS  Google Scholar 

  6. H.J. Kim, E.A. Decker and D.J. McClements, Lagmuir 21, 134–139, (2005)

    Article  CAS  Google Scholar 

  7. E. Dickinson, Colloids Surf B Biointerfaces 20, 197–210 (2001)

    Article  CAS  Google Scholar 

  8. E. Dickinson and M. Golding, Colloids Surf A Physicochem Eng Asp 144, 167–177 (1998)

    Article  CAS  Google Scholar 

  9. S. Kiokias, C.K. Reiffers-Magnani and A. Bot, J Agric Food Chem 52, 3823–3830 (2004)

    Article  CAS  Google Scholar 

  10. S. Kiokias and A. Bot, Food Hydrocoll 19, 493–501 (2005)

    Article  CAS  Google Scholar 

  11. H.T. Osborn-Barnes and C.C. Akoh, J Agric Food Chem 51, 6856–6860 (2003)

    Article  CAS  Google Scholar 

  12. M.P. Almajano and M.H. Gordon, J Am Oil Chem Soc 81, 275–280 (2004)

    Article  CAS  Google Scholar 

  13. A. Villiere, M. Vian, I. Brownec, N. Moreau and C. Genot, J Agric Food Chem 53, 1514–1520 (2005)

    Article  CAS  Google Scholar 

  14. IUPAC, Standard Methods of Analysis of Oils Fats and Derivatives, 7th ed., edited by C. Paquot and H. Hautfenne (Blackwell, Oxford, UK, 1987)

    Google Scholar 

  15. S. Kiokias and M. Gordon, Eur J Clinl Nutr 57, 1135–1140 (2003)

    Article  CAS  Google Scholar 

  16. C.D. Nuchi, P. Hernadez, D.J. McClements and E.A. Decker, J Agric Food Chem 50, 5445–5449 (2002).

    Article  CAS  Google Scholar 

  17. R.E. McDonald and H.O. Hultin, J Food Sci 52, 15–21, 27 (1987)

    Article  CAS  Google Scholar 

  18. S. Kiokias, C.K. Reiffers-Magnani, and A. Bot, Int Dairy J 14, 287–295 (2004)

    Article  CAS  Google Scholar 

  19. G. van Dalen, J Microsc 208, 116–133 (2002)

    Article  Google Scholar 

  20. L.B. Fomuso, M. Corredig and C.C. Akoh, J Agric Food Chem 50, 7114–7118 (2002)

    Article  CAS  Google Scholar 

  21. S.R. Euston, R.L. Hirst and J.P. Hill, J Food Sci 60, 1124–1131 (1995)

    Article  CAS  Google Scholar 

  22. E. Dickinson and D.J. McClements, In: Advances in Food Colloids, (Blackie Academic and Professional, London, 1995), pp. 18–23

    Google Scholar 

  23. A. Kato, S. Tasimoto, Y. Mouraki, K. Kobayashi and I. Kumagai, Biosci Biotechnol Biochem 56, 1424–1428 (1992)

    CAS  Google Scholar 

  24. E. Dickinson, S.E. Rolfe and D.G. Dagleish, Food Hydrocoll 265, 397–405 (1988)

    Article  Google Scholar 

  25. D.S. Wong, W.M. Camirand and A.E. Pavlath, Crit Rev Food Sci Nutr 36, 807–844 (1996)

    Article  CAS  Google Scholar 

  26. M. Hu, J. McClements and E.A. Decker, J Agric Food Chem 51, 1435–1439 (2003)

    Article  CAS  Google Scholar 

  27. S.R. Euston and R.L. Hirst, Int Dairy J 9, 693–701 (1999)

    Article  CAS  Google Scholar 

  28. S. Kiokias, K. Lampa, D. Tsimogiannis and V. Oreopoulou, Proceedings of INTRAFOOD-EFFoST Conference, Vol 2 1237–1240

  29. S. Kiokias and A. Bot, Food Hydrocoll 20, 246–252 (2006)

    Article  CAS  Google Scholar 

  30. M. Diaz, C. Dunn, D.J. McClements and E.A. Decker, J Agric Food Chem 51, 2365–2370 (2003)

    Article  CAS  Google Scholar 

  31. S. Hekmat and D.J. McMahon, Lebensm-Wiss Technol 31, 632–638 (1998).

    Article  CAS  Google Scholar 

  32. A.R Wheatley, Trends Anal Chem 19, 620–627 (2000)

    Article  Google Scholar 

  33. S.R. Euston, S.R. Finnigan and R.L. Hirst, Food Hydrocoll 15, 253–262 (2001)

    Article  CAS  Google Scholar 

  34. E. Dickinson and G. Iveson, Food Hydocoll 6, 533–541 (1993).

    CAS  Google Scholar 

  35. K.G. Berger, In: Food Emulsions, edited by K. Larsson and S. Friesberg (Marcel Dekker, New York, 1990), pp. 367–444

    Google Scholar 

  36. S.R. Euston, In: Food Emulsifiers and Their Applications, edited by G.L. Hasenheuttl and R.W. Hartel (Chapman and Hall, New York, 1997), pp. 173–210

    Google Scholar 

  37. K. Moore and L.S. Roberts, Radic Res 28, 659–661 (1998)

    Article  CAS  Google Scholar 

  38. J.Z. Hawrysh, In: Conola and Rapeseed Oil. Production, Chemistry, Nutrition, and Processing, edited by F. Shahidi (Van Nostrand-Reinhold, New York, 1990), pp. 99–122

    Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. A. Bot, Dr. F. Duval, K. Lampi, and G. Kouri for technical support. We would also like to thank MINERVA SA for the kind donation of vegetable oils and the analyses for their fatty acid profiles and tocopherol contents. The project was financed by a European Marie Curie Reintegration Program (6th Framework, contract no. 513675).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassiliki Oreopoulou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiokias, S.N., Dimakou, C.P., Tsaprouni, I.V. et al. Effect of Compositional Factors against the Thermal Oxidative Deterioration of Novel Food Emulsions. Food Biophysics 1, 115–123 (2006). https://doi.org/10.1007/s11483-006-9015-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-006-9015-2

Keywords

Navigation