Skip to main content

Advertisement

Log in

Increased Expression of CD95 in CD4+ Effector Memory T Cells Promotes Th17 Response in Patients with Myasthenia Gravis

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Emerging data have revealed that CD95 can evoke non-apoptotic signals, thereby promoting pro-inflammatory functions that link to the severity of autoimmune disorders. Here, we reported that the expression of CD95 in CD4+ effector memory T (CD4+ TEM) cells was increased in myasthenia gravis (MG) patients. We also found increased expression of CD95 in CD4+ TEM cells from MG patients correlated positively with clinical severity scores (QMGs), serum IL-17 levels and plasma cells (PCs) frequencies. Conventional treatment, such as glucocorticoid, could down-regulate the expression of CD95 in CD4+ TEM cells, QMGs, serum IL-17 levels and PCs frequencies from MG patients. In vitro, low-dose of agonistic anti-CD95 mAb could promote Th17 cell development. This effect was reversed by CD95 siRNA. Moverover, CD95 stimulation induced the phosphorylation of p38 and Erk1/2 and Th17 cell differentiation, and p38 specific inhibitor SB203580 or Erk1/2 specific inhibitor PD98059 could induce opposite changes. However, SB203580 or PD98059 do not abrogate the increase of CCR6+IL-17A+ cells, ROR-γt and IL-17 expression induced by CD95 triggering relatively to each corresponding control. This suggests that p38 and Erk1/2 MAPK pathway plays a role in expression of CCR6+IL-17A+ cells, ROR-γt and IL-17, but not in their increase induced by CD95 triggering. Taken together, this study revealed that increased expression of CD95 in CD4+ TEM cells promotes Th17 response under the microenvironment of MG.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aguilo-Seara G, Xie Y, Sheehan J, Kusner LL, Kaminski HJ (2017) Ablation of IL-17 expression moderates experimental autoimmune myasthenia gravis disease severity. Cytokine 96:279–285

    Article  CAS  Google Scholar 

  • Aldahlawi AM, Elshal MF, Ashgan FT, Bahlas S (2015) Chemokine receptors expression on peripheral CD4-lymphocytes in rheumatoid arthritis: Coexpression of CCR7 and CD95 is associated with disease activity. Saudi J Biol Sci 22(4):453–458

    Article  CAS  Google Scholar 

  • Aldahlawi AM, Elshal MF, Damiaiti LA, Damanhori LH, Bahlas SM (2016) Analysis of CD95 and CCR7 expression on circulating CD4(+) lymphocytes revealed disparate immunoregulatory potentials in systemic lupus erythematosus. Saudi J Biol Sci 23(1):101–107

    Article  CAS  Google Scholar 

  • Alderson MR, Armitage RJ, Maraskovsky E, Tough TW, Roux E, Schooley K, Ramsdell F, Lynch DH (1993) Fas transduces activation signals in normal human T lymphocytes. J Exp Med 178(6):2231–2235

    Article  CAS  Google Scholar 

  • Arlettaz L, Barbey C, Dumont-Girard F, Helg C, Chapuis B, Roux E, Roosnek E (2015) CD45 isoform phenotypes of human T cells: CD4+CD45RA–RO+ memory T cells re-acquire CD45RA without losing CD45RO. Eur J Immunol 29(12):3987–3994

    Article  Google Scholar 

  • Barohn RJ, McIntire D, Herbelin L, Wolfe GI, Nations S, Bryan WW (1998) Reliability testing of the quantitative myasthenia gravis score. Ann N Y Acad Sci 841:769–772

    Article  Google Scholar 

  • Boggio E, Melensi M, Bocca S, Chiocchetti A, Comi C, Clemente N, Orilieri E, Soluri MF, D’Alfonso S, Mechelli R, Gentile G, Poggi A, Salvetti M, Ramenghi U, Dianzani U (2012) The -346T polymorphism of the SH2D1A gene is a risk factor for development of autoimmunity/lymphoproliferation in males with defective Fas function. Hum Immunol 73(5):585–592

    Article  CAS  Google Scholar 

  • Boggio E, Clemente N, Mondino A, Cappellano G, Orilieri E, Gigliotti CL, Toth E, Ramenghi U, Dianzani U, Chiocchetti A (2014) IL-17 protects T cells from apoptosis and contributes to development of ALPS-like phenotypes. Blood 123(8):1178–1186

    Article  CAS  Google Scholar 

  • Brennan FM, Smith NM, Owen S, Li C, Amjadi P, Green P, Andersson A, Palfreeman AC, Hillyer P, Foey A, Beech JT, Feldmann M (2008) Resting CD4+ effector memory T cells are precursors of bystander-activated effectors: a surrogate model of rheumatoid arthritis synovial T-cell function. Arthritis Res Ther 10(2):R36

    Article  Google Scholar 

  • Chervonsky AV (1999) Apoptotic and effector pathways in autoimmunity. Curr Opin Immunol 11(6):684–688

    Article  CAS  Google Scholar 

  • Chung BK, Guevel BT, Reynolds GM, Gupta Udatha DB, Henriksen EK, Stamataki Z, Hirschfield GM, Karlsen TH, Liaskou E (2017) Phenotyping and auto-antibody production by liver-infiltrating B cells in primary sclerosing cholangitis and primary biliary cholangitis. J Autoimmun 77:45–54

    Article  CAS  Google Scholar 

  • Cao Y, Amezquita RA, Kleinstein SH, Stathopoulos P, Nowak RJ, O’Connor KC (2016) Autoreactive T Cells from Patients with Myasthenia Gravis Are Characterized by Elevated IL-17, IFN-γ, and GM-CSF and Diminished IL-10 Production. J Immunol 196(5):2075–2084

    Article  CAS  Google Scholar 

  • Comi C, Leone M, Bonissoni S, DeFranco S, Bottarel F, Mezzatesta C, Chiocchetti A, Perla F, Monaco F, Dianzani U (2000) Defective T cell fas function in patients with multiple sclerosis. Neurology 55(7):921–927

    Article  CAS  Google Scholar 

  • Comi C, Gaviani P, Leone M, Ferretti M, Castelli L, Mesturini R, Ubezio G, Chiocchetti A, Osio M, Muscia F, Bogliun G, Corso G, Gavazzi A, Mariani C, Cantello R, Monaco F, Dianzani U (2006) Fas-mediated T-cell apoptosis is impaired in patients with chronic inflammatory demyelinating polyneuropathy. J Peripher Nerv Syst 11(1):53–60

    Article  CAS  Google Scholar 

  • Conti-Fine BM, Milani M, Wang W (2010) CD4+ T cells and cytokines in the pathogenesis of acquired myasthenia gravis. Ann N Y Acad Sci 1132:193–209

    Article  Google Scholar 

  • DeFranco S, Bonissoni S, Cerutti F, Bona G, Bottarel F, Cadario F, Brusco A, Loffredo G, Rabbone I, Corrias A, Pignata C, Ramenghi U, Dianzani U (2001) Defective function of Fas in patients with type 1 diabetes associated with other autoimmune diseases. Diabetes 50(3):483–488

    Article  CAS  Google Scholar 

  • Dianzani U, Chiocchetti A, Ramenghi U (2003) Role of inherited defects decreasing Fas function in autoimmunity. Life Sci 72(25):2803–2824

    Article  CAS  Google Scholar 

  • Drachman DB (1994) Medical progress: myasthenia gravis. N Engl J Med 330:1797–1810

    Article  CAS  Google Scholar 

  • Fortin E, Cestari DM, Weinberg DH (2018) Ocular myasthenia gravis: an update on diagnosis and treatment. Curr Opin Ophthalmol 29:477–484

    Article  Google Scholar 

  • Fritsch RD, Shen X, Illei GG, Yarboro CH, Prussin C, Hathcock KS, Hodes RJ, Lipsky PE (2006) Abnormal differentiation of memory T cells in systemic lupus erythematosus. Arthritis Rheum 54(7):2184–2197

    Article  CAS  Google Scholar 

  • Gilhus NE (2016) Myasthenia Gravis. N Engl J Med 375:2570–2581

    Article  CAS  Google Scholar 

  • Gilhus NE, Tzartos S, Evoli A, Palace J, Burns TM, Verschuuren JJGM (2019) Myasthenia Gravis Nat Rev Dis Primers 5(1):30

    Article  Google Scholar 

  • Gomez AM, Van Den Broeck J, Vrolix K, Janssen SP, Lemmens MA, Van Der Esch E, Duimel H, Frederik P, Molenaar PC, Martínez-Martínez P, De Baets MH, Losen M (2010) Antibody effector mechanisms in myasthenia gravis-pathogenesis at the neuromuscular junction. Autoimmunity 43(5–6):353–370

    Article  CAS  Google Scholar 

  • Gray JI, Westerhof LM, MacLeod MKL (2018) The roles of resident, central and effector memory CD4 T-cells in protective immunity following infection or vaccination. Immunology 154(4):574–581

    Article  CAS  Google Scholar 

  • Guégan JP, Legembre P (2018) Nonapoptotic functions of Fas/CD95 in the immune response. FEBS J285(5):809–827

  • Hengel RL, Thaker V, Pavlick MV, Metcalf JA, Dennis G Jr, Yang J, Lempicki RA, Sereti I, Lane HC (2003) Cutting edge: L-selectin (CD62L) expression distinguishes small resting memory CD4+ T cells that preferentially respond to recall antigen. J Immunol 170(1):28–32

    Article  CAS  Google Scholar 

  • Hehir MK, Silvestri NJ (2018) Generalized Myasthenia Gravis: Classification, Clinical Presentation, Natural History, and Epidemiology. Neurol Clin 36(2):253–260

    Article  Google Scholar 

  • Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, Vincent A (2001) Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med 7(3):365–368

    Article  CAS  Google Scholar 

  • Hsu HC, Yang P, Wang J, Wu Q, Myers R, Chen J, Yi J, Guentert T, Tousson A, Stanus AL, Le TV, Lorenz RG, Xu H, Kolls JK, Carter RH, Chaplin DD, Williams RW, Mountz JD (2008) Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol 9(2):166–175

    Article  CAS  Google Scholar 

  • Huang X, Yu P, Liu M, Deng Y, Dong Y, Liu Q, Zhang J, Wu T (2019) ERK inhibitor JSI287 alleviates imiquimod-induced mice skin lesions by ERK/IL-17 signaling pathway. Int Immunopharmacol 66:236–241

    Article  CAS  Google Scholar 

  • Jaretzki A 3rd, Barohn RJ, Ernstoff RM, Kaminski HJ, Keesey JC, Penn AS, Sanders DB (2000) Myasthenia gravis: recommendations for clinical research standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Neurology 55:16–23

    Article  Google Scholar 

  • Klehmet J, Staudt M, Ulm L, Unterwalder N, Meisel A, Meisel C (2015) Circulating lymphocyte and T memory subsets in glucocorticosteroid versus IVIG treated patients with CIDP. J Neuroimmunol 283:17–22

    Article  CAS  Google Scholar 

  • King C, Ilic A, Koelsch K, Sarvetnick N (2004) Homeostatic expansion of T cells during immune insufficiency generates autoimmunity. Cell 117(2):265–277

    Article  CAS  Google Scholar 

  • Koneczny I, Herbst R (2019) Myasthenia Gravis: Pathogenic Effects of Autoantibodies on Neuromuscular Architecture. Cells 8:2–35

    Article  Google Scholar 

  • Kosalka J, Jakiela B, Musial J (2016) Changes of memory B- and T-cell subsets in lupus nephritis patients. Folia Histochem Cytobiol 54(1):32–41

    Google Scholar 

  • Lavrik IN, Golks A, Riess D, Bentele M, Eils R, Krammer PH (2007) Analysis of CD95 threshold signaling: triggering of CD95 (FAS/APO-1) at low concentrations primarily results in survival signaling. J Biol Chem 282(18):13664–13671

    Article  CAS  Google Scholar 

  • Le Gallo M, Poissonnier A, Blanco P, Legembre P (2017) CD95/Fas, Non-Apoptotic Signaling Pathways, and Kinases. Front Immunol 8:1216

    Article  Google Scholar 

  • Lee SM, Kim EJ, Suk K, Lee WH (2011) Stimulation of Fas (CD95) induces production of pro-inflammatory mediators through ERK/JNK-dependent activation of NF-κB in THP-1 cells. Cell Immunol 271(1):157–162

    Article  CAS  Google Scholar 

  • Li X, Zhang Z, Peng A, He M, Xu J, Shen S, Zhuang J, Huang X (2014) Effect of CD95 on inflammatory response in rheumatoid arthritis fibroblast-like synoviocytes. Cell Immunol 290(2):209–216

    Article  CAS  Google Scholar 

  • Liu H, Rohowsky-Kochan C (2008) Regulation of IL-17 in human CCR6+ effector memory T cells. J Immunol 180(12):7948–7957

    Article  CAS  Google Scholar 

  • Liu X, Ma Q, Qiu L, Ou C, Lin Z, Lu Y, Huang H, Chen P, Huang Z, Liu W (2020) Quantitative features and clinical significance of two subpopulations of AChR-specific CD4+ T cells in patients with myasthenia gravis. Clin Immunol 216:108462

  • Luo M, Liu X, Meng H, Xu L, Li Y, Li Z, Liu C, Luo YB, Hu B, Xue Y, Liu Y, Luo Z, Yang H (2017) IFNA-AS1 regulates CD4+ T cell activation in myasthenia gravis though HLA-DRB1. Clin Immunol 183:121–131

    Article  CAS  Google Scholar 

  • Masopust D, Vezys V, Marzo AL, Lefrançois L (2008) Preferential localization of effector memory cells in nonlymphoid tissue. Science 291(5512):2413–2417

    Article  Google Scholar 

  • Matthias J, Heink S, Picard F, Zeiträg J, Kolz A, Chao YY, Soll D, de Almeida GP, Glasmacher E, Jacobsen ID, Riedel T, Peters A, Floess S, Huehn J, Baumjohann D, Huber M, Korn T, Zielinski CE (2020) Salt generates antiinflammatory Th17 cells but amplifies pathogenicity in proinflammatory cytokine microenvironments. J Clin Invest 130:4587–4600

    Article  CAS  Google Scholar 

  • Miyawaki T, Uehara T, Nibu R, Tsuji T, Yachie A, Yonehara S, Taniguchi N (1992) Differential expression of apoptosis-related Fas antigen on lymphocyte subpopulations in human peripheral blood. J Immunol 149(11):3753–3758

    Article  CAS  Google Scholar 

  • Monserrat J, Bohórquez C, Gómez Lahoz AM, Movasat A, Pérez A, Ruíz L, Díaz D, Chara L, Sánchez AI, Albarrán F, Sanz I, Álvarez-Mon M (2019) The Abnormal CD4+T Lymphocyte Subset Distribution and Vbeta Repertoire in New-onset Rheumatoid Arthritis Can Be Modulated by Methotrexate Treament. Cells 8(8):871

    Article  CAS  Google Scholar 

  • Nakae S, Komiyama Y, Nambu A, Sudo K, Iwase M, Homma I, Sekikawa K, Asano M, Iwakura Y (2002) Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17(3):375–387

    Article  CAS  Google Scholar 

  • Nakae S, Nambu A, Sudo K, Iwakura Y (2003) Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol 171(11):6173–6177

    Article  CAS  Google Scholar 

  • Nielsen BR, Ratzer R, Börnsen L, von Essen MR, Christensen JR, Sellebjerg F (2017) Characterization of naïve, memory and effector T cells in progressive multiple sclerosis. J Neuroimmunol 310:17–25

    Article  CAS  Google Scholar 

  • Paulsen M, Valentin S, Mathew B, Adam-Klages S, Bertsch U, Lavrik I, Krammer PH, Kabelitz D, Janssen O (2011) Modulation of CD4+ T-cell activation by CD95 co-stimulation. Cell Death Differ 18(4):619–631

    Article  CAS  Google Scholar 

  • Penninger JM (2001) CD45: new jobs for an old acquaitance. Nat Immunol 2:389–396

    Article  CAS  Google Scholar 

  • Peter ME, Budd RC, Desbarats J, Hedrick SM, Hueber AO, Newell MK, Owen LB, Pope RM, Tschopp J, Wajant H, Wallach D, Wiltrout RH, Zörnig M, Lynch DH (2007) The CD95 receptor: apoptosis revisited. Cell 129(3):447–450

    Article  CAS  Google Scholar 

  • Piantoni S, Regola F, Zanola A, Andreoli L, Dall’Ara F, Tincani A, Airo’ P (2018) Effector T-cells are expanded in systemic lupus erythematosus patients with high disease activity and damage indexes. Lupus 27(1):143–149

    Article  CAS  Google Scholar 

  • Poissonnier A, Sanséau D, Le Gallo M, Malleter M, Levoin N, Viel R, Morere L, Penna A, Blanco P, Dupuy A, Poizeau F, Fautrel A, Seneschal J, Jouan F, Ritz J, Forcade E, Rioux N, Contin-Bordes C, Ducret T, Vacher AM, Barrow PA, Flynn RJ, Vacher P, Legembre P (2016) CD95-Mediated Calcium Signaling Promotes T Helper 17 Trafficking to Inflamed Organs in Lupus-Prone Mice. Immunity 45(1):209–223

    Article  CAS  Google Scholar 

  • Poissonnier A, Guégan JP, Nguyen HT, Best D, Levoin N, Kozlov G, Gehring K, Pineau R, Jouan F, Morere L, Martin S, Thomas M, Lazaro E, Douchet I, Ducret T, van de Weghe P, Blanco P, Jean M, Vacher P, Legembre P (2018) Disrupting the CD95-PLCγ1 interaction prevents Th17-driven inflammation. Nat Chem Biol 14(12):1079–1089

    Article  CAS  Google Scholar 

  • Raphael I, Joern RR, Forsthuber TG (2020) Memory CD4+ T Cells in Immunity and Autoimmune Diseases. Cells 9(3):531

    Article  CAS  Google Scholar 

  • Ratajczak W, Niedźwiedzka-Rystwej P, Tokarz-Deptuła B, Deptuła W (2018) Immunological memory cells. Cent Eur J Immunol 43(2):194–203

    Article  CAS  Google Scholar 

  • Rattik S, Engelbertsen D, Wigren M, Ljungcrantz I, Östling G, Persson M, Nordin Fredrikson G, Bengtsson E, Nilsson J, Björkbacka H (2019) Elevated circulating effector memory T cells but similar levels of regulatory T cells in patients with type 2 diabetes mellitus and cardiovascular disease. Diab Vasc Dis Res 16(3):270–280

    Article  CAS  Google Scholar 

  • Rieux-Laucat F (2017) What’s up in the ALPS. Curr Opin Immunol 49:79–86

    Article  CAS  Google Scholar 

  • Rieux-Laucat F, Magérus-Chatinet A, Neven B (2018) The Autoimmune Lymphoproliferative Syndrome with Defective FAS or FAS-Ligand Functions. J Clin Immunol 38(5):558–568

    Article  CAS  Google Scholar 

  • Roche JC, Capablo JL, Larrad L, Gervas-Arruga J, Ara JR, Sánchez A, Alarcia R (2011) Increased serum interleukin-17 levels in patients with myasthenia gravis. Muscle Nerve 44(2):278–280

    Article  CAS  Google Scholar 

  • Sallusto F, Geginat J, Lanzavecchia A (2004) Central Memory and Effector Memory T Cell Subsets: Function, Generation, and Maintenance. Annu Rev Immunol 22:745–763

    Article  CAS  Google Scholar 

  • Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708–712

    Article  CAS  Google Scholar 

  • Sanders DB, Wolfe GI, Benatar M, Evoli A, Gilhus NE, Illa I, Kuntz N, Massey JM, Melms A, Murai H, Nicolle M, Palace J, Richman DP, Verschuuren J, Narayanaswami P (2016) International consensus guidance for management of myasthenia gravis: Executive summary. Neurology 87(4):419–425

    Article  Google Scholar 

  • Schaffert H, Pelz A, Saxena A, Losen M, Meisel A, Thiel A, Kohler S (2015) IL-17-producing CD4(+) T cells contribute to the loss of B-cell tolerance in experimental autoimmune myasthenia gravis. Eur J Immunol 45(5):1339–1347

    Article  CAS  Google Scholar 

  • Shen Y, Song Z, Lu X, Ma Z, Lu C, Zhang B, Chen Y, Duan M, Apetoh L, Li X, Guo J, Miao Y, Zhang G, Yang D, Cai Z, Wang J (2019) Fas signaling-mediated TH9 cell differentiation favors bowel inflammation and antitumor functions. Nat Commun 10(1):2924

    Article  Google Scholar 

  • Shiao SL, Kirkiles-Smith NC, Shepherd BR, McNiff JM, Carr EJ, Pober JS (2007) Human effector memory CD4+ T cells directly recognize allogeneic endothelial cells in vitro and in vivo. J Immunol 179(7):4397–4404

    Article  CAS  Google Scholar 

  • Skeie GO, Apostolski S, Evoli A, Gilhus NE, Hart IK, Harms L, Hilton-Jones D, Melms A, Verschuuren J, Horge HW (2006) Guidelines for the treatment of autoimmune neuromuscular transmission disorders. Eur J Neurol 13(7):691–699

    Article  CAS  Google Scholar 

  • Strasser A, Jost PJ, Nagata S (2009) The many roles of FAS receptor signaling in the immune system. Immunity 30:180–192

    Article  CAS  Google Scholar 

  • Subbarayal B, Chauhan SK, Di Zazzo A, Dana R (2016) IL-17 Augments B Cell Activation in Ocular Surface Autoimmunity. J Immunol 197(9):3464–3470

    Article  CAS  Google Scholar 

  • Tan Q, Yang H, Liu E, Wang H (2017) P38/ERK MAPK signaling pathways are involved in the regulation of filaggrin and involucrin by IL-17. Mol Med Rep 16(6):8863–8867

    Article  CAS  Google Scholar 

  • Upasani V, Vo HTM, Ung S, Heng S, Laurent D, Choeung R, Duong V, Sorn S, Ly S, Rodenhuis-Zybert IA, Dussart P, Cantaert T (2019) Impaired Antibody-Independent Immune Response of B Cells in Patients With Acute Dengue Infection. Front Immunol 10:2500

    Article  CAS  Google Scholar 

  • Wang ZY, Karachunski PI, Howard JF Jr, Conti-Fine BM (1999) Myasthenia in SCID mice grafted with myasthenic patient lymphocytes: role of CD4+ and CD8+ cells. Neurology 52(3):484–497

    Article  CAS  Google Scholar 

  • Williams JW, Ferreira CM, Blaine KM, Rayon C, Velázquez F, Tong J, Peter ME, Sperling AI (2018) Non-apoptotic Fas (CD95) signaling on T cells regulates the resolution of Th2-mediated inflammation. Front Immunol 9:2521

    Article  Google Scholar 

  • Wisniewski P, Ellert-Miklaszewska A, Kwiatkowska A, Kaminska B (2010) Non-apoptotic Fas signaling regulates invasiveness of glioma cells and modulates MMP-2 activity via NFkappaB-TIMP-2 pathway. Cell Signal 22(2):212–220

    Article  CAS  Google Scholar 

  • Yosef N, Shalek AK, Gaublomme JT, Jin H, Lee Y, Awasthi A, Wu C, Karwacz K, Xiao S, Jorgolli M, Gennert D, Satija R, Shakya A, Lu DY, Trombetta JJ, Pillai MR, Ratcliffe PJ, Coleman ML, Bix M, Tantin D, Park H, Kuchroo VK, Regev A (2013) Dynamic regulatory network controlling TH17 cell differentiation. Nature 496(7446):461–468

    Article  CAS  Google Scholar 

  • Zhang B, Tzartos JS, Belimezi M, Ragheb S, Bealmear B, Lewis RA, Xiong WC, Lisak RP, Tzartos SJ, Mei L (2012) Autoantibodies to lipoprotein-related protein 4 in patients with double-seronegative myasthenia gravis. Arch Neurol 69(4):445–451

    Article  Google Scholar 

  • Zhang Y, Zhang X, Xia Y, Jia X, Li H, Zhang Y, Shao Z, Xin N, Guo M, Chen J, Zheng S, Wang Y, Fu L, Xiao C, Geng D, Liu Y, Cui G, Dong R, Huang X, Yu T (2016) CD19+ Tim-1+ B cells are decreased and negatively correlated with disease severity in Myasthenia Gravis patients. Immunol Res 64(5–6):1216–1224

    Article  CAS  Google Scholar 

  • Zhang Y, Shao Z, Zhang X, Jia X, Xia Y, Zhang Y, Xin N, Guo M, Chen J, Zheng S, Wang Y, Fu L, Dong R, Xiao C, Geng D, Liu Y (2015) TIPE2 Play a Negative Role in TLR4-Mediated Autoimmune T Helper 17 Cell Responses in Patients with Myasthenia Gravis. J Neuroimmune Pharmacol 10(4):635–644

    Article  Google Scholar 

  • Zu Horste MG, Przybylski D, Schramm MA, Wang C, Schnell A`, Lee Y, Sobel R, Regev A, Kuchroo VK (2018) Fas Promotes T Helper 17 Cell Differentiation and Inhibits T Helper 1 Cell Development by Binding and Sequestering Transcription Factor STAT1. Immunity 48(3):556–569

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by The Fifth Phase "333 Project" Scientific Research Subsidy Project in Jiangsu Province (BRA2018395), National Nature Science Foundation of China (81072465, 81571579), Postgraduate Research & Practice Innovation Program of Jiangsu Province (SJCX20_0928), Innovation and entrepreneurship training program for college students in Jiangsu Province (201610313038Y), Key medical talents fund of Jiangsu Province (H201130) and Jiangsu Province ordinary university postgraduate research innovation fund(CXLX11_0734).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Zhang or Deqin Geng.

Ethics declarations

Ethics Approval

The Ethics Committee of Affiliated Hospital of Xuzhou Medical University approved the study protocol. Written consent was obtained from all study participants or their immediate family members.

Consent for Publication

Not applicable.

Competing Interests

The authors have no financial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 94 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Zhu, J., Liu, T. et al. Increased Expression of CD95 in CD4+ Effector Memory T Cells Promotes Th17 Response in Patients with Myasthenia Gravis. J Neuroimmune Pharmacol 17, 437–452 (2022). https://doi.org/10.1007/s11481-021-10030-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-021-10030-7

Keywords

Navigation