Skip to main content

Advertisement

Log in

Synergistic Effect and Mechanism of Apoptosis Induction by Morphine and the HIV-1gp120V3 Loop in Hippocampal Neurons

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

HIV-associated neurocognitive disorders (HAND) are a collective name for neurological disorders associated with HIV-1 infection. The incidence and severity of HAND are increased by concomitant opioid use disorder, such as heroin and morphine abuse. Our previous study showed that the HIV-1 envelope protein gp120 and morphine synergistically induce apoptosis in rat hippocampal neurons. However, the underlying mechanism remains unclear. We hypothesized that morphine and gp120 activated the neuronal apoptosis signaling pathway via their typical membrane receptors. If they shared key signaling molecules, their induction of neuronal apoptosis could be inhibited by blocking these targets. We found that morphine and gp120V3 loop synergistically induced hippocampal neuron apoptosis, mediated by activating the extracellular signal-regulated kinase (ERK) pathway, increasing the intracellular Ca2 + concentration and expression of caspase-, and reducing the mitochondrial membrane potential. The ERK inhibitor PD98509 and the phosphatidylinositol 3-kinase activator IGF-1 blocked this effect. These results indicate that ERK plays a crucial role in the apoptosis of hippocampal neurons in HAND.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agoglia AE, Sharko AC, Psilos KE, Holstein SE, Reid GT, Hodge CW (2015) Alcohol alters the activation of ERK1/2, a functional regulator of binge alcohol drinking in adult C57BL/6J mice. Alcohol Clin Exp Res 39(3):463–475. https://doi.org/10.1111/acer.12645

  • Alessandrini A, Namura S, Moskowitz MA, Bonventre JV (1999) MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia. Proc Natl Acad Sci USA 96(22):12866–12869. https://doi.org/10.1073/pnas.96.22.12866

  • Altice FL, Bruce RD, Lucas GM, Lum PJ, Korthuis PT, Flanigan TP, Cunningham CO, Sullivan LE, Vergara-Rodriguez P, Fiellin DA, Cajina A, Botsko M, Nandi V, Gourevitch MN, Finkelstein R, BHIVES Collaborative (2011) HIV treatment outcomes among HIV-infected, opioid-dependent patients receiving buprenorphine/naloxone treatment within HIV clinical care settings: results from a multisite study. J Acquir Immune Defic Syndr 56(supp1):S22–32. https://doi.org/10.1097/QAI.0b013e318209751e

  • Atici S, Cinel L, Cinel I, Doruk N, Aktekin M, Akca A, Handan C, Ugur O (2004) Opioid neurotoxicity: comparison of Morphine and tramadol in an experimental rat model. Int J Neurosci 114(8): 1001–1011. https://doi.org/10.1080/00207450490461314

  • Bachis A, Biggio F, Major EO, Mocchetti I (2009) M- and T-tropic HIVs promote apoptosis in rat neurons. J Neuroimmune Pharmacol: the official journal of the Society on Neuroimmune Pharmacol 4(1):150–160. https://doi.org/10.1007/s11481-008-9141-3

    Article  Google Scholar 

  • Barry U, Zuo Z (2005) Opioids: old drugs for potential new applications. Curr Pharm Des 11(10): 1343–1350. https://doi.org/10.2174/1381612053507459

  • Byrd DA, Fellows RP, Morgello S, Franklin D, Heaton RK, Deutsch R, Atkinson JH, Clifford DB, Collier AC, Marra CM, Gelman B, McCutchan JA, Duarte NA, Simpson DM, McArthur J, Grant I, CHARTER Group (2011) Neurocognitive impact of substance use in HIV infection. J Acquir Immune Defic Syndr 58(2):154–162. https://doi.org/10.1097/QAI.0b013e318229ba41

  • Catani MV, Corasaniti MT, Navarra M, Nistico G, Finazzi-Agro A, Melino G (2000) gp120 induces cell death in human neuroblastoma cells through the CXCR4 and CCR5 chemokine receptors. J Neurochem 74(6):2373–2379. https://doi.org/10.1046/j.1471-4159.2000.0742373.x

  • Chen G, Liu S, Pan R, Li G, Tang H, Jiang M, Xing Y, Jin F, Lin L, Dong J (2018) Curcumin Attenuates gp120-Induced Microglial Inflammation by Inhibiting Autophagy via the PI3K Pathway. Cell Mol Neurobiol 38(8):1465–1477. https://doi.org/10.1007/s10571-018-0616-3

    Article  CAS  Google Scholar 

  • Chen X, Kirby LG, Palma J, Benamar K, Geller EB, Eisenstein TK, Adler MW (2011) The effect of gp120 on morphine’s antinociceptive and neurophysiological actions. Brain Behav Immun 25(7):1434–1443. https://doi.org/10.1016/j.bbi.2011.04.014

    Article  CAS  Google Scholar 

  • Chilunda V, Calderon TM, Martinez-Aguado P, Berman JW (2019) The impact of substance abuse on HIV-mediated neuropathogenesis in the current ART era. Brain Res 1724:146426. https://doi.org/10.1016/j.brainres.2019.146426

  • Cunningham CO (2018) Opioids and HIV Infection: From Pain Management to Addiction Treatment. Top Antivir Med 25(4):143–146

    Google Scholar 

  • Deng Q, Huang T, Tang H, Zhong X, Xia S, Wei X, Dong J (2011) Curcumin protects against interleukin-6-induced rapid Ca2+ influx in rat hippocampal neurons. Neural Regen Res 6(24):1850–1854. https://doi.org/10.3969/j.issn.1673-5374.2011.24.002

  • Dutta R, Roy S (2012) Mechanism(s) involved in opioid drug abuse modulation of HAND. Curr HIV Res 10(5):469–477. https://doi.org/10.2174/157016212802138805

  • Gannon P, Khan MZ, Kolson DL (2011) Current understanding of HIV-associated neurocognitive disorders pathogenesis. Curr Opin Neurol 24(3):275–283. https://doi.org/10.1097/WCO.0b013e32834695fb

  • Gong Z, Yang L, Tang H, Pan R, Xie S, Guo L, Wang J, Deng Q, Xiong G, Xing Y, Dong J (2012) Protective effects of curcumin against human immunodeficiency virus 1 gp120 V3 loop-induced neuronal injury in rats. Neural Regen Res 7(3):171–175. https://doi.org/10.3969/j.issn.1673-5374.2012.03.002

  • Gurwell JA, Nath A, Sun Q, Zhang J, Martin KM, Chen Y, Hauser KF (2001) Synergistic neurotoxicity of opioids and human immunodeficiency virus-1 Tat protein in striatal neurons in vitro. Neuroscience 102(3):555–63. https://doi.org/10.1016/s0306-4522(00)00461-9

  • Heinisch S, Palma J, Kirby LG (2011) Interactions between chemokine and mu-opioid receptors: anatomical findings and electrophysiological studies in the rat periaqueductal grey. Brain Behav Immun 25(2):360–372. https://doi.org/10.1016/j.bbi.2010.10.020

  • Hu S, Sheng WS, Lokensgard JR, Peterson PK (2005) Morphine potentiates HIV-1 gp120-induced neuronal apoptosis. J Infect Dis 191(6):886–889. https://doi.org/10.1086/427830

  • Hu G, Yao H, Chaudhuri AD, Duan M, Yelamanchili SV, Wen H, Cheney PD, Fox HS, Buch S (2012) Exosome-mediated shuttling of microRNA-29 regulates HIV Tat and Morphine-mediated neuronal dysfunction. Cell Death Dis 3:e381. https://doi.org/10.1038/cddis.2012.114

  • Ji J, Yu Y, Li ZL, Chen MY, Deng R, Huang X, Wang GF, Zhang MX, Yang Q, Ravichandran S, Feng GK, Xu XL, Yang CL, Qiu MZ, Jiao L, Yang D, Zhu XF (2018) XIAP Limits Autophagic Degradation of Sox2 and Is A Therapeutic Target in Nasopharyngeal Carcinoma Stem Cells. Theranostics 8(6):1494–1510. https://doi.org/10.1016/j.jep.2019.112336

    Article  CAS  Google Scholar 

  • Jones MV, Bell JE, Nath A (2000) Immunolocalization of HIV envelope gp120 in HIV encephalitis with dementia. AIDS 14(17):2709-2713. https://doi.org/10.1097/00002030-200012010-00010

  • Kaul M, Garden GA, Lipton SA (2001) Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410(6831):988–994. https://doi.org/10.1038/35073667

    Article  CAS  Google Scholar 

  • Kim HJ, Shin AH, Thayer SA (2011) Activation of cannabinoid type 2 receptors inhibits HIV-1 envelope glycoprotein gp120-induced synapse loss. Mol Pharmacol 80(3):357-366. https://doi.org/10.1124/mol.111.071647

  • Kim S, Hahn YK, Podhaizer EM, McLane VD, Zou S, Hauser KF, Knapp PE (2018) A central role for glial CCR5 in directing the neuropathological interactions of HIV-1 Tat and opiates. J Neuroinflammation 15(1):285. https://doi.org/10.1186/s12974-018-1320-4

  • Liu FF, Zhao S, Liu P, Huo SP (2019a). Influence of mTOR signaling pathway on ketamine-induced injuries in the hippocampal neurons of rats. Neurol Res 41(1):77–86. https://doi.org/10.1080/01616412.2018.1531203

  • Liu L, Zhu J, Zhou L, Wan L (2016) RACK1 promotes maintenance of Morphine-associated memory via activation of an ERK-CREB dependent pathway in hippocampus. Sci Report 6,20183. https://doi.org/10.1038/srep20183

  • Liu WG, Han LL, Xiang R (2019b) Protection of miR-19b in hypoxia/reoxygenation-induced injury by targeting PTEN. J Cell Physiol. https://doi.org/10.1002/jcp.28286. Advance Online Publication

  • Malik S, Saha R, Seth P (2014) Involvement of extracellular signal-regulated kinase (ERK1/2)-p53-p21 axis in mediating neural stem/progenitor cell cycle arrest in co-morbid HIV-drug abuse exposure. J Neuroimmune Pharmacol 9(3):340-353. https://doi.org/10.1007/s11481-014-9523-7

  • Maragos WF, Young KL, Turchan JT, Guseva M, Pauly JR, Nath A, Cass WA (2002) Human immunodeficiency virus-1 Tat protein and methamphetamine interact synergistically to impair striatal dopaminergic function. J Neurochem 83(4):955–963. https://doi.org/10.1046/j.1471-4159.2002.01212.x

  • Martin-Thormeyer EM, Paul RH (2009) Drug abuse and hepatitis C infection as comorbid features of HIV associated neurocognitive disorder: neurocognitive and neuroimaging features. Neuropsychol Rev 19(2):215–231. https://doi.org/10.1007/s11065-009-9101-6

  • Meucci O, Miller RJ (1996) gp120-induced neurotoxicity in hippocampal pyramidal neuron cultures: protective action of TGF-beta1. J Neurosci 16(13):4080-4088. https://doi.org/10.1523/JNEUROSCI.16-13-04080.1996

  • Mocchetti I, Bachis A, Avdoshina V (2012) Neurotoxicity of human immunodeficiency virus-1: viral proteins and axonal transport. Neurotox Res 21(1):79–89. https://doi.org/10.1007/s12640-011-9279-2

  • Nath A, Geiger J (1998) Neurobiological aspects of human immunodeficiency virus infection: neurotoxic mechanisms. Prog Neurobiol 54(1): 19–33. https://doi.org/10.1016/s0301-0082(97)00053-1

  • NIH U.S. National Library of Medicine (2020) [Website]. Available from: www.clinicaltrials.gov Accessed 6 May 2020

  • Nookala AR, Schwartz DC, Chaudhari NS, Glazyrin A, Stephens EB, Berman N, Kumar A (2018) Methamphetamine augment HIV-1 Tat mediated memory deficits by altering the expression of synaptic proteins and neurotrophic factors. Brain Behav Immun 71:37–51. https://doi.org/10.1016/j.bbi.2018.04.018

    Article  CAS  Google Scholar 

  • Park JH, Kim BH, Park SJ, Jin JK, Jeon YC, Wen GY, Shin HY, Carp RI, Kim YS (2011) Association of endothelial nitric oxide synthase and mitochondrial dysfunction in the hippocampus of scrapie-infected mice. Hippocampus 21(3):319–333. https://doi.org/10.1002/hipo.20753

  • Paris JJ, Liere P, Kim S, Mahdi F, Buchanan ME, Nass SR, Qrareya AN, Salahuddin MF, Pianos A, Fernandez N, Shariat-Madar Z, Knapp PE, Schumacher M, Hauser KF (2020) Pregnane steroidogenesis is altered by HIV-1 Tat and morphine: Physiological allopregnanolone is protective against neurotoxic and psychomotor effects. Neurobiol Stress 12:100211. https://doi.org/10.1016/j.ynstr.2020.100211

  • Peng F, Dhillon NK, Yao H, Zhu X, Williams R, Buch S (2008) Mechanisms of platelet-derived growth factor-mediated neuroprotection--implications in HIV dementia. Eur J Neurosci 28(7):1255–1264. https://doi.org/10.1111/j.1460-9568.2008.06444.x

  • Petito CK, Roberts B, Cantando JD, Rabinstein A, Duncan R (2001) Hippocampal injury and alterations in neuronal chemokine co-receptor expression in patients with AIDS. J Neuropathol Exp Neurol 60(4):377-385. https://doi.org/10.1093/jnen/60.4.377

  • Podhaizer EM, Zou S, Fitting S, Samano KL, El-Hage N, Knap PE, Hauser KF (2012) Morphine and gp120 toxic interactions in striatal neuron are dependent on HIV-1 strain. J Neuroimmune Pharmacol 7(4):877–891. https://doi.org/10.1007/s11481-011-9326-z

  • Purohit V, Rapaka R, Shurtleff D (2011) Drugs of abuse, dopamine, and HIV-associated neurocognitive disorders/HIV-associated dementia. Mol Neurobiol 44(1):102–110. https://doi.org/10.1007/s12035-011-8195-z

  • Rezaei F, Saebipour MR, Ghaemi K, Hassanzadeh-Taheri MM, Foadoddini M, Hosseini M (2020) Intra-cerebroventricular Administration of Crocin Attenuates Sleep Deprivation-induced Hyperalgesia in Rats. Basic Clin Neurosci 11(3):261–267. https://doi.org/10.32598/bcn.11.2.144.3

  • Salvioli S, Ardizzoni A, Franceschi C, Cossarizza A (1997) JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess delta psi changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett 411(1):77-82. https://doi.org/10.1016/S0014-5793(97)00669

  • Saylor Deanna, Dickens Alex M, Sacktor Ned, Haughey Norman, Slusher Barbara, Pletnikov Mikhail, Mankowski Joseph L, Brown Amanda, Volsky David J, McArthur Justin C (2016) HIV-associated neurocognitive disorder–pathogenesis and prospects for treatment. Nat Rev Neurol 12 (4):234–248. https://doi.org/10.1038/nrneurol.2016.53

  • Shi Y, Yuan S, Tang SJ (2020) Reactive Oxygen Species (ROS) are Critical for Morphine Exacerbation of HIV-1 gp120-Induced Pain. J Neuroimmune Pharmacol: the official journal of the Society on Neuroimmune Pharmacol. https://doi.org/10.1007/s11481-020-09951-6

    Article  Google Scholar 

  • Shibata S, Tominaga K, Watanabe S (1995) kappa-Opioid receptor agonist protects against ischemic reduction of 2-deoxyglucose uptake in Morphine-tolerant rats. Eur J Pharmacol 279(2–3):197–202. https://doi.org/10.1016/0014-2999(95)00152-b

  • Spudich S, González-Scarano F (2012) HIV-1-related central nervous system disease: current issues in pathogenesis, diagnosis, and treatment. Cold Spring Harbor Perspect Med 2(6):a007120. https://doi.org/10.1101/cshperspect.a007120

    Article  CAS  Google Scholar 

  • Sun WL., Quizon PM., Zhu J (2016) Molecular Mechanism: ERK Signaling, Drug Addiction, and Behavioral Effects. Prog Mol Biol Transl Sci 137:1–40. https://doi.org/10.1016/bs.pmbts.2015.10.017

  • Takashima A (2006) GSK-3 is essential in the pathogenesis of Alzheimer's disease. J Alzheimers Dis. 9(3 Suppl):309–317. https://doi.org/10.3233/jad-2006-9s335

  • Takahashi K, Yi H, Liu CH, Liu S, Kashiwagi Y, Patin DJ, Hao S (2018) Spinal bromodomain-containing protein 4 contributes to neuropathic pain induced by HIV glycoprotein 120 with morphine in rats. NeuroReport 29(6):441–446. https://doi.org/10.1097/WNR.0000000000000992

    Article  CAS  Google Scholar 

  • Tang H, Lu D, Pan R, Qin X, Xiong H, Dong J (2009) Curcumin improves spatial memory impairment induced by human immunodeficiency virus type 1 glycoprotein 120 V3 loop peptide in rats. Life Sci 85(1–2):1–10. https://doi.org/10.1016/j.lfs.2009.03.013

  • Tang H, Pan R, Fang W, Xing Y, Chen D, Chen X, Yu Y, Wang J, Gong Z, Xiong G, Dong J (2013) Curcumin ameliorates hippocampal neuron damage induced by human immunodeficiency virus-1. Neural Regen Res 8(15):1368–1375. https://doi.org/10.3969/j.issn.1673-5374.2013.15.003

  • Toggas SM, Masliah E, Rockenstein EM, Rall GF, Abraham CR, Mucke L (1994) Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature 367(6459):188–193. https://doi.org/10.1038/367188a0

  • UNAIDS (2018) 2017 GLOBAL HIV STATISTICS. [Website]. Available from: http://aidsinfo.unaids.org/

  • Vicario-Abejon C (2004) Long-term culture of hippocampal neurons. Curr Protoc Neurosci Chapter 3: Unit 3. https://doi.org/10.1002/0471142301.ns0302s26

  • Wang JK, Guo Q, Zhang XW, Wang LC, Liu Q, Tu PF, Jiang Y, Zeng KW (2020) Aglaia odorata Lour. extract inhibit ischemic neuronal injury potentially via suppressing p53/Puma-mediated mitochondrial apoptosis pathway. J Ethnopharmacol 248:112336. https://doi.org/10.1016/j.jep.2019.112336

  • Yao R, Cooper GM. (1995) Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267(5206):2003-2006. https://doi.org/10.1126/science.7701324

  • Zhou Y, Liu J, Xiong H (2017) HIV-1 Glycoprotein 120 Enhancement of N-Methyl-D-Aspartate NMDA Receptor-Mediated Excitatory Postsynaptic Currents: Implications for HIV-1-Associated Neural Injury. J Neuroimmune Pharmacol: the official journal of the Society on Neuroimmune Pharmacol 12(2):314–326. https://doi.org/10.1007/s11481-016-9719-0

    Article  Google Scholar 

Download references

Funding

This study was supported by a grant from the National Natural Science Foundation of China (No. 81171134, 81471235 and 81974185); Guangdong Provincial Natural Science Foundation of China (2019A1515012024); Programme of Introducing Talents of Discipline to Universities (B14036); National Basic Research Program of China C973 program (2011CB707500); Science and Technology Foundation of Guangdong(2010B030700016); The Medical Group Fund of Jinan University (88016013039).

Author information

Authors and Affiliations

Authors

Contributions

Jun Dong designed research; Xueqin Yan, Zheng Gong, Rui Pan performed research; Huili Wang, Haijie Tang, Hanyang he, Saixian Wen, Yongmei Fu analyzed and interpreted the data. Xueqin Yan and Haijie Tang corrected English errors in paper. Xueqin Yan wrote the paper.

Corresponding author

Correspondence to Jun Dong.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Gong, Z., Pan, R. et al. Synergistic Effect and Mechanism of Apoptosis Induction by Morphine and the HIV-1gp120V3 Loop in Hippocampal Neurons. J Neuroimmune Pharmacol 17, 165–180 (2022). https://doi.org/10.1007/s11481-021-09989-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-021-09989-0

Keywords

Navigation