Skip to main content

Advertisement

Log in

Mechanisms of Blood-Brain Barrier Disruption in Herpes Simplex Encephalitis

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Herpes simplex encephalitis (HSE) is often caused by infection with herpes simplex virus 1 (HSV-1), a neurotropic double-stranded DNA virus. HSE infection always impacts the temporal and frontal lobes or limbic system, leading to edema, hemorrhage, and necrotic changes in the brain parenchyma. Additionally, patients often exhibit severe complications following antiviral treatment, including dementia and epilepsy. HSE is further associated with disruptions to the blood-brain barrier (BBB), which consists of microvascular endothelial cells, tight junctions, astrocytes, pericytes, and basement membranes. Following an HSV-1 infection, changes in BBB integrity and permeability can result in increased movement of viruses, immune cells, and/or cytokines into the brain parenchyma. This leads to an enhanced inflammatory response in the central nervous system and further damage to the brain. Thus, it is important to protect the BBB from pathogens to reduce brain damage from HSE. Here, we discuss HSE and the normal structure and function of the BBB. We also discuss growing evidence indicating an association between BBB breakdown and the pathogenesis of HSE, as well as future research directions and potential new therapeutic targets.

During herpes simplex encephalitis, the functions and structures of each composition of BBB have been altered by different factors, thus the permeability and integrity of BBB have been broken. The review aim to explore the potential mechanisms and factors in the process, probe the next research targets and new therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TJs:

tight junctions

AJ:

adhesion junction

BM:

basal membrane

BBB:

blood-brain barrier

CNS:

central nervous system

EAE:

experimental autoimmune encephalomyelitis

EC:

endothelial cells

ECM:

extracellular molecules

GA:

Golgi apparatus

HSE:

Herpes simplex encephalitis

HSV-1:

herpes simplex virus 1

ICAM:

intracellular adhesion molecule

IFN:

interferon

IL-1β:

interleukin 1-beta

iNOS:

inducible nitric oxide synthase

MMP:

Membrane metalloprotease

NF-κB:

nuclear factor kappa B

PKC:

protein kinase C

TEER:

transendothelial electric resistance

TNF-α:

tumor necrosis factor alpha

TGF-β:

transforming growth factor-beta

VEGF:

vascular endothelial growth factor

ZO:

zonula occluden.

References

  • Abbott NJ (2002) Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat 200:629–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37:13–25

    Article  CAS  PubMed  Google Scholar 

  • Adamson P, Etienne S, Couraud PO, Calder V, Greenwood J (1999) Lymphocyte migration through brain endothelial cell monolayers involves signaling through endothelial ICAM-1 via a rho-dependent pathway. J Immunol 162:2964–2973

    CAS  PubMed  Google Scholar 

  • Albert S, Lossinsky MJM, Wisniewski RPAH (1995) Intercellular adhesion molecule-I (ICAM-I) upregulation in human brain tumors as an expression of increased blood-brain barrier permeability. Brain Pathol 5:339–344

    Article  Google Scholar 

  • Almutairi MMA, Gong C, Xu YG, Chang Y, Shi H (2016) Factors controlling permeability of the blood–brain barrier. Cell Mol Life Sci 73:57–77

    Article  CAS  PubMed  Google Scholar 

  • Alvarez JI, Katayama T, Prat A (2013) Glial influence on the blood brain barrier. Glia 61:1939–1958

    Article  PubMed  PubMed Central  Google Scholar 

  • Aravalli RN, Hu S, Rowen TN, Gekker G, Lokensgard JR (2006) Differential apoptotic signaling in primary glial cells infected with herpes simplex virus 1. J Neurovirol 12:501–510

    Article  CAS  PubMed  Google Scholar 

  • Argaw AT, Zhang Y, Snyder BJ, Zhao ML, Kopp N, Lee SC, Raine CS, Brosnan CF, John GR (2006) IL-1beta regulates blood-brain barrier permeability via reactivation of the hypoxia-angiogenesis program. J Immunol 177:5574–5584

    Article  CAS  PubMed  Google Scholar 

  • Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR (2009) VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown. Proc Natl Acad Sci 106:1977–1982

    Article  PubMed  PubMed Central  Google Scholar 

  • Argaw AT, Asp L, Zhang J, Navrazhina K, Pham T, Mariani JN, Mahase S, Dutta DJ, Seto J, Kramer EG, Ferrara N, Sofroniew MV, John GR (2012) Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J Clin Investig 122:2454–2468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armien AG, Hu S, Little MR, Robinson N, Lokensgard JR, Low WC, Cheeran MC (2010) Chronic cortical and subcortical pathology with associated neurological deficits ensuing experimental herpes encephalitis. Brain Pathol 20:738–750

    Article  PubMed  Google Scholar 

  • Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood–brain barrier. Nature 468:557–561

    Article  CAS  PubMed  Google Scholar 

  • Ashley SL, Pretto CD, Stier MT, Kadiyala P, Castro-Jorge L, Hsu T, Doherty R, Carnahan KE, Castro MG, Lowenstein PR, Spindler KR (2017) Matrix metalloproteinase activity in infections by an encephalitic virus, mouse adenovirus type 1. J Virol 91:e1412–e1416

    Article  Google Scholar 

  • Banisadr G, Queraud-Lesaux F, Boutterin MC, Pelaprat D, Zalc B, Rostene W, Haour F, Parsadaniantz SM (2002) Distribution, cellular localization and functional role of CCR2 chemokine receptors in adult rat brain. J Neurochem 81:257–269

    Article  CAS  PubMed  Google Scholar 

  • Bataveljić D, Nikolić L, Milosević M, Todorović N, Andjus PR (2012) Changes in the astrocytic aquaporin-4 and inwardly rectifying potassium channel expression in the brain of the amyotrophic lateral sclerosis SOD1G93A rat model. Glia 60:1991–2003

    Article  PubMed  Google Scholar 

  • Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313

    Article  CAS  PubMed  Google Scholar 

  • Block ML, Hong J (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98

    Article  CAS  PubMed  Google Scholar 

  • Bradshaw MJ, Venkatesan A (2016) Herpes simplex Virus-1 encephalitis in adults: pathophysiology, diagnosis, and management. Neurotherapeutics 13:493–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brankin B, Hart MN, Cosby SL, Fabry Z, Allen IV (1995) Adhesion molecule expression and lymphocyte adhesion to cerebral endothelium: effects of measles virus and herpes simplex 1 virus. J Neuroimmunol 56:1–8

    Article  CAS  PubMed  Google Scholar 

  • Broux B, Gowing E, Prat A (2015) Glial regulation of the blood-brain barrier in health and disease. Semin Immunopathol 37:577–590

    Article  CAS  PubMed  Google Scholar 

  • Burda JE, Sofroniew MV (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81:229–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpen O, Pallai P, Staunton DE, Springer TA (1992) Association of intercellular adhesion molecule-1 (ICAM-1) with actin-containing cytoskeleton and alpha-actinin. J Cell Biol 118:1223–1234

    Article  CAS  PubMed  Google Scholar 

  • Carvey PM, Hendey B, Monahan AJ (2009) The blood-brain barrier in neurodegenerative disease: a rhetorical perspective. J Neurochem 111:291–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CY, Li JR, Chen WY, Ou YC, Lai CY, Hu YH, Wu CC, Chang CJ, Chen CJ (2015) Disruption of in vitro endothelial barrier integrity by Japanese encephalitis virus-infected astrocytes. Glia 63:1915–1932

    Article  PubMed  Google Scholar 

  • Chapouly C, Tadesse Argaw A, Horng S, Castro K, Zhang J, Asp L, Loo H, Laitman BM, Mariani JN, Straus Farber R, Zaslavsky E, Nudelman G, Raine CS, John GR (2015) Astrocytic TYMP and VEGFA drive blood–brain barrier opening in inflammatory central nervous system lesions. Brain 138:1548–1567

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, McCarron RM, Golech S, Bembry J, Ford B, Lenz FA, Azzam N, Spatz M (2003) ET-1- and NO-mediated signal transduction pathway in human brain capillary endothelial cells. Am J Physiol Cell Physiol 284:C243–C249

    Article  CAS  PubMed  Google Scholar 

  • Chen CJ, Ou YC, Li JR, Chang CY, Pan HC, Lai CY, Liao SL, Raung SL, Chang CJ (2014) Infection of pericytes in vitro by Japanese encephalitis virus disrupts the integrity of the endothelial barrier. J Virol 88:1150–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu H, Xiang J, Wu P, Su J, Ding H (2014) The role of aquaporin 4 in apoptosis after intracerebral hemorrhage. J Neuroinflammation 11:1–12

    Article  CAS  Google Scholar 

  • Clayton A, Evans RA, Pettit E, Hallett M, Williams JD, Steadman R (1998) Cellular activation through the ligation of intercellular adhesion molecule-1. J Cell Sci 111(Pt 4):443–453

    CAS  PubMed  Google Scholar 

  • Croen KD (1993) Evidence for an antiviral effect of nitric oxide. J Clin Invest 91:2446–2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cummins PM (2011) Occludin: one protein, many forms. Mol Cell Biol 32:242–250

    Article  CAS  PubMed  Google Scholar 

  • Daneman R, Prat A (2015) The blood–brain barrier. Cold Spring Harb Perspect Biol 7:a20412

    Article  CAS  Google Scholar 

  • Davis LE, Johnson RT (1979) An explanation for the localization of herpes simplex encephalitis? Ann Neurol 5:2–5

    Article  CAS  PubMed  Google Scholar 

  • Deng, S, Liu, H, Qiu, K, You, H, Lei, Q, Lu, W (2017) Role of the Golgi apparatus in the blood-brain barrier: Golgi protection may be a targeted therapy for neurological diseases. Mol Neurobiol 1-14

  • Derakhshan M (2006) Human herpesvirus 1 protein US3 induces an inhibition of mitochondrial electron transport. J Gen Virol 87:2155–2159

    Article  CAS  PubMed  Google Scholar 

  • Di Cara G, Marabeti M, Musso R, Riili I, Cancemi P, Pucci Minafra I (2018) New insights into the occurrence of matrix metalloproteases −2 and −9 in a cohort of breast Cancer patients and proteomic correlations. Cells 7:89

    Article  PubMed Central  Google Scholar 

  • Dietrich JB (2002) The adhesion molecule ICAM-1 and its regulation in relation with the blood-brain barrier. J Neuroimmunol 128:58–68

    Article  CAS  PubMed  Google Scholar 

  • DiMauro S, Davidzon G (2009) Mitochondrial DNA and disease. Ann Med 37:222–232

    Article  CAS  Google Scholar 

  • Ding R, Chen Y, Yang S, Deng X, Fu Z, Feng L, Cai Y, Du M, Zhou Y, Tang Y (2014) Blood–brain barrier disruption induced by hemoglobin in vivo: involvement of up-regulation of nitric oxide synthase and peroxynitrite formation. Brain Res 1571:25–38

    Article  CAS  PubMed  Google Scholar 

  • Dobbie MS, Hurst RD, Klein NJ, Surtees RA (1999) Upregulation of intercellular adhesion molecule-1 expression on human endothelial cells by tumour necrosis factor-a in an in vitro model of the blood – brain barrier. Brain Res 830:330–336

    Article  CAS  PubMed  Google Scholar 

  • Dohgu S, Takata F, Yamauchi A, Nakagawa S, Egawa T, Naito M, Tsuruo T, Sawada Y, Niwa M, Kataoka Y (2005) Brain pericytes contribute to the induction and up-regulation of blood–brain barrier functions through transforming growth factor-β production. Brain Res 1038:208–215

    Article  CAS  PubMed  Google Scholar 

  • Duguay BA, Smiley JR (2013) Mitochondrial nucleases ENDOG and EXOG participate in mitochondrial DNA depletion initiated by herpes simplex virus 1 UL12.5. J Virol 87:11787–11797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elias BC, Suzuki T, Seth A, Giorgianni F, Kale G, Shen L, Turner JR, Naren A, Desiderio DM, Rao R (2008) Phosphorylation of Tyr-398 and Tyr-402 in Occludin prevents its interaction with ZO-1 and destabilizes its assembly at the tight junctions. J Biol Chem 284:1559–1569

    Article  CAS  PubMed  Google Scholar 

  • Esiri MM (1982) Herpes simplex encephalitis. An immunohistological study of the distribution of viral antigen within the brain. J Neurol Sci 54:209–226

    Article  CAS  PubMed  Google Scholar 

  • Etienne-Manneville S, Manneville JB, Adamson P, Wilbourn B, Greenwood J, Couraud PO (2000) ICAM-1-coupled cytoskeletal rearrangements and transendothelial lymphocyte migration involve intracellular calcium signaling in brain endothelial cell lines. J Immunol 165:3375–3383

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Hu Z, Zeng L, Lu W, Tang X, Zhang J, Li T (2008) Golgi apparatus and neurodegenerative diseases. Int J Dev Neurosci 26:523–534

    Article  CAS  PubMed  Google Scholar 

  • Fanning AS (2002) Isolation and functional characterization of the actin-binding region in the tight junction protein ZO-1. FASEB J 16:1835–1837

    Article  CAS  PubMed  Google Scholar 

  • Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM (1998) The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 273:29745–29753

    Article  CAS  PubMed  Google Scholar 

  • Feldman LTEA (2002) Spontaneous molecular reactivation of herpes simplex virus type 1 latency in mice. Proc Natl Acad Sci U S A 99:978–983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng S, Cen J, Huang Y, Shen H, Yao L, Wang Y, Chen Z (2011) Matrix metalloproteinase-2 and -9 secreted by leukemic cells increase the permeability of blood-brain barrier by disrupting tight junction proteins. PLoS One 6:e20599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii S, Akaike T, Maeda H (1999) Role of nitric oxide in pathogenesis of herpes simplex virus encephalitis in rats. Virology 256:203–212

    Article  CAS  PubMed  Google Scholar 

  • Fukumura D, Gohongi T, Kadambi A, Izumi Y, Ang J, Yun CO, Buerk DG, Huang PL, Jain RK (2001) Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci U S A 98:2604–2609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furr SR, Chauhan VS, Moerdyk-Schauwecker MJ, Marriott I (2011) A role for DNA-dependent activator of interferon regulatory factor in the recognition of herpes simplex virus type 1 by glial cells. J Neuroinflammation 8:99–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuyuko Takata SDJM, Eriko Harada HMMK (2011) Brain pericytes among cells constituting the blood-brain barrier are highly sensitive to tumor necrosis factor-a, releasing matrix metalloproteinase-9 and migrating in vitro. J Neuroinflammation 8:106–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galdiero S, Valiante S, Falanga A, Cigliano L, Iachetta G, Busiello RA, La Marca V, Galdiero M, Lombardi A (2015) Peptide gH625 enters into neuron and astrocyte cell lines and crosses the blood–brain barrier in rats. Int J Nanomedicine 10:1885–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia JG, Davis HW, Patterson CE (1995) Regulation of endothelial cell gap formation and barrier dysfunction: role of myosin light chain phosphorylation. J Cell Physiol 163:510–522

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Mariscal, L, ABPN (2003). Tight junction proteins. Prog Biophys Mol Biol 81, 1–44

  • Hamann GF, Okada Y, Fitridge R, Del ZG (1995) Microvascular basal lamina antigens disappear during cerebral ischemia and reperfusion. Stroke 26:2120–2126

    Article  CAS  PubMed  Google Scholar 

  • Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  CAS  PubMed  Google Scholar 

  • Haseloff RF, Dithmer S, Winkler L, Wolburg H, Blasig IE (2015) Transmembrane proteins of the tight junctions at the blood–brain barrier: structural and functional aspects. Semin Cell Dev Biol 38:16–25

    Article  CAS  PubMed  Google Scholar 

  • Hayashi K, Nakao S, Nakaoke R, Nakagawa S, Kitagawa N, Niwa M (2004) Effects of hypoxia on endothelial/pericytic co-culture model of the blood–brain barrier. Regul Pept 123:77–83

    Article  CAS  PubMed  Google Scholar 

  • Hill J, Rom S, Ramirez SH, Persidsky Y (2014) Emerging roles of Pericytes in the regulation of the neurovascular unit in health and disease. J NeuroImmune Pharmacol 9:591–605

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirase T, Kawashima S, Wong EYM, Ueyama T, Rikitake Y, Tsukita S, Yokoyama M, Staddon JM (2001) Regulation of tight junction permeability and Occludin phosphorylation by RhoA-p160ROCK-dependent and -independent mechanisms. J Biol Chem 276:10423–10431

    Article  CAS  PubMed  Google Scholar 

  • Hjalmarsson A, Blomqvist P, Skoldenberg B (2007) Herpes simplex encephalitis in Sweden, 1990-2001: incidence, morbidity, and mortality. Clin Infect Dis 45:875–880

    Article  PubMed  Google Scholar 

  • Hsieh HL, Wang HH, Wu WB, Chu PJ, Yang CM (2010) Transforming growth factor-beta1 induces matrix metalloproteinase-9 and cell migration in astrocytes: roles of ROS-dependent ERK- and JNK-NF-kappaB pathways. J Neuroinflammation 7:88–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu S, Sheng WS, Schachtele SJ, Lokensgard JR (2011) Reactive oxygen species drive herpes simplex virus (HSV)-1-induced proinflammatory cytokine production by murine microglia. J Neuroinflammation 8:123–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Han S, Sun Q, Zhao Y, Liu J, Yuan X, Mao W, Peng B, Liu W, Yin J, He X (2017) Kv1.3 channel blocker (ImKTx88) maintains blood–brain barrier in experimental autoimmune encephalomyelitis. Cell Biosci 7:31–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jennische E, Eriksson CE, Lange S, Trybala E, Bergström T (2015) The anterior commissure is a pathway for contralateral spread of herpes simplex virus type 1 after olfactory tract infection. J Neurovirol 21:129–147

    Article  CAS  PubMed  Google Scholar 

  • Jung JS, Bhat RV, Preston GM, Guggino WB, Baraban JM, Agre P (1994) Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. Proc Natl Acad Sci U S A 91:13052–13056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kettenmann H, Hanisch UK, Noda M, Verkhratsky A (2011) Physiology of microglia. Physiol Rev 91:461–553

    Article  CAS  PubMed  Google Scholar 

  • Kiening KL, Landeghem F, Schreiber S, Thomale UW, Deimling AV (2002) Decreased hemispheric Aquaporin-4 is linked to evolving brain edema following controlled cortical impact injury in rats. Neurosci Lett 324:105–108

    Article  CAS  PubMed  Google Scholar 

  • Kim YC, Bang D, Lee K, Lee S (2000) The effect of herpesvirus infection on the expression of cell adhesion molecules on cultured human dermal microvascular endothelial cells. J Dermatol Sci 24:38–47

    Article  CAS  PubMed  Google Scholar 

  • Ko A, Kim JY, Hyun H, Kim J (2015a) Endothelial NOS activation induces the blood–brain barrier disruption via ER stress following status epilepticus. Brain Res 1622:163–173

    Article  CAS  PubMed  Google Scholar 

  • Ko A, Kim JY, Hyun H, Kim J (2015b) Endothelial NOS activation induces the blood–brain barrier disruption via ER stress following status epilepticus. Brain Res 1622:163–173

    Article  CAS  PubMed  Google Scholar 

  • Kolb SA, Lahrtz F, Paul R, Leppert D, Nadal D, Pfister HW, Fontana A (1998) Matrix metalloproteinases and tissue inhibitors of metalloproteinases in viral meningitis: upregulation of MMP-9 and TIMP-1 in cerebrospinal fluid. J Neuroimmunol 84:143–150

    Article  CAS  PubMed  Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  CAS  PubMed  Google Scholar 

  • Kumaraswamy GK, Fu MM, Docherty JJ (2006) Innate and adaptive host response during the initial phase of herpes simplex virus encephalitis in the neonatal mouse. J Neurovirol 12:365–374

    Article  CAS  PubMed  Google Scholar 

  • Lai C, Kuo K, Leo JM (2005) Critical role of actin in modulating BBB permeability. Brain Res Rev 50:7–13

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Wu C, Chiang Y, Chen Y, Chang K, Chuang C, Lee I (2018) Carbon monoxide releasing molecule-2 attenuates Pseudomonas aeruginosa-induced ROS-dependent ICAM-1 expression in human pulmonary alveolar epithelial cells. Redox Biol 18:93–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leuzinger H, Ziegler U, Schraner EM, Fraefel C, Glauser DL, Heid I, Ackermann M, Mueller M, Wild P (2005) Herpes simplex virus 1 envelopment follows two diverse pathways. J Virol 79:13047–13059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewandowski G, Hobbs MV (1998) Evidence for deficiencies in intracerebral cytokine production, adhesion molecule induction, and T cell recruitment in herpes simplex virus type-2 infected mice. J Neuroimmunol 81:58–65

    Article  CAS  PubMed  Google Scholar 

  • Li T, You H, Zhang J, Mo X, He W, Chen Y, Tang X, Jiang Z, Tu R, Zeng L, Lu W, Hu Z (2014) Study of GOLPH3: a potential stress-inducible protein from Golgi apparatus. Mol Neurobiol 49:1449–1459

    Article  CAS  PubMed  Google Scholar 

  • Li W, Qi K, Wang Z, Gu M, Chen G, Guo F, Wang Z (2015) Golgi phosphoprotein 3 regulates metastasis of prostate cancer via matrix metalloproteinase 9. Int J Clin Exp Pathol 8:3691–3700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, You H, Mo X, He W, Tang X, Jiang Z, Chen S, Chen Y, Zhang J, Hu Z (2016) GOLPH3 mediated Golgi stress response in modulating N2A cell death upon oxygen-glucose deprivation and Reoxygenation injury. Mol Neurobiol 53:1377–1385

    Article  CAS  PubMed  Google Scholar 

  • Lima GK, Zolini GP, Mansur DS, Freire Lima BH, Wischhoff U, Astigarraga RG, Dias MF, Silva MDGA, Béla SR, Do Valle Antonelli LR, Arantes RM, Gazzinelli RT, Báfica A, Kroon EG, Campos MA (2010) Toll-like receptor (TLR) 2 and TLR9 expressed in trigeminal ganglia are critical to viral control during herpes simplex virus 1 infection. Am J Pathol 177:2433–2445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lind L, Studahl M, Persson Berg L, Eriksson K (2017) CXCL11 production in cerebrospinal fluid distinguishes herpes simplex meningitis from herpes simplex encephalitis. J Neuroinflammation 14:134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Hong JS (2003) Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther 304:1–7

    Article  CAS  PubMed  Google Scholar 

  • Lokensgard JR, Hu S, Sheng W, VanOijen M, Cox D, Cheeran MC, Peterson PK (2001) Robust expression of TNF-alpha, IL-1beta, RANTES, and IP-10 by human microglial cells during nonproductive infection with herpes simplex virus. J Neuro-Oncol 7:208–219

    CAS  Google Scholar 

  • Lokensgard JR, Cheeran MC, Hu S, Gekker G, Peterson PK (2002) Glial cell responses to herpesvirus infections: role in defense and immunopathogenesis. J Infect Dis 186(Suppl 2):S171–S179

    Article  PubMed  Google Scholar 

  • Lundberg P, Ramakrishna C, Brown J, Tyszka JM, Hamamura M, Hinton DR, Kovats S, Nalcioglu O, Weinberg K, Openshaw H, Cantin EM (2008a) The immune response to herpes simplex virus type 1 infection in susceptible mice is a major cause of central nervous system pathology resulting in fatal encephalitis. J Virol 82:7078–7088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundberg P, Ramakrishna C, Brown J, Tyszka JM, Hamamura M, Hinton DR, Kovats S, Nalcioglu O, Weinberg K, Openshaw H, Cantin EM (2008b) The immune response to herpes simplex virus type 1 infection in susceptible mice is a major cause of central nervous system pathology resulting in fatal encephalitis. J Virol 82:7078–7088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6:159–163

    Article  CAS  PubMed  Google Scholar 

  • Mantovani A (1999) The chemokine system: redundancy for robust outputs. Immunol Today 20:254–257

    Article  CAS  PubMed  Google Scholar 

  • Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2:679–689

    Article  CAS  PubMed  Google Scholar 

  • Margolis TP, Imai Y, Yang L, Vallas V, Krause PR (2007) Herpes simplex virus type 2 (HSV-2) establishes latent infection in a different population of ganglionic neurons than HSV-1: role of latency-associated transcripts. J Virol 81:1872–1878

    Article  CAS  PubMed  Google Scholar 

  • Mark KS, Burroughs AR, Brown RC, Huber JD, Davis TP (2004) Nitric oxide mediates hypoxia-induced changes in paracellular permeability of cerebral microvasculature. AJP: Heart and Circulatory Physiology 286:174H–180H

  • Marques CP, Cheeran MC, Palmquist JM, Hu S, Lokensgard JR (2008a) Microglia are the major cellular source of iNOS during experimental herpes encephalitis. J Neurovirol 14:229–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marques CP, Cheeran MC, Palmquist JM, Hu S, Lokensgard JR (2008b) Prolonged microglial cell activation and lymphocyte infiltration following experimental herpes Encephalitis1. J Immunol 181:6417–6426

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Torres FJ, Wagner S, Haas J, Kehm R, Sellner J, Hacke W, Meyding-Lamadé U (2004) Increased presence of matrix metalloproteinases 2 and 9 in short- and long-term experimental herpes simplex virus encephalitis. Neurosci Lett 368:274–278

    Article  CAS  PubMed  Google Scholar 

  • Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58:1094–1103

    Article  PubMed  Google Scholar 

  • Mettenleiter TC (2004) Budding events in herpesvirus morphogenesis. Virus Res 106:167–180

    Article  CAS  PubMed  Google Scholar 

  • Meyding-Lamade U, Haas J, Lamade W, Stingele K, Kehm R, Fath A, Heinrich K, Storch HB, Wildemann B (1998) Herpes simplex virus encephalitis: long-term comparative study of viral load and the expression of immunologic nitric oxide synthase in mouse brain tissue. Neurosci Lett 244:9–12

    Article  CAS  PubMed  Google Scholar 

  • Meyding-Lamade U, Lamade W, Kehm R, Oberlinner C, Fath A, Wildemann B, Haas J, Hacke W (1999a) Herpes simplex virus encephalitis: chronic progressive cerebral MRI changes despite good clinical recovery and low viral load - an experimental mouse study. Eur J Neurol 6:531–538

    Article  CAS  PubMed  Google Scholar 

  • Meyding-Lamade UK, Lamade WR, Wildemann BT, Sartor K, Hacke W (1999b) Herpes simplex virus encephalitis: chronic progressive cerebral magnetic resonance imaging abnormalities in patients despite good clinical recovery. Clin Infect Dis 28:148–149

    Article  CAS  PubMed  Google Scholar 

  • Meyding-Lamade U, Seyfer S, Haas J, Dvorak F, Kehm R, Lamade W, Hacke W, Wildemann B (2002) Experimental herpes simplex virus encephalitis: inhibition of the expression of inducible nitric oxide synthase in mouse brain tissue. Neurosci Lett 318:21–24

    Article  CAS  PubMed  Google Scholar 

  • Milatovic D, Zhang Y, Olson SJ, Montine KS, Roberts LN, Morrow JD, Montine TJ, Dermody TS, Valyi-Nagy T (2002) Herpes simplex virus type 1 encephalitis is associated with elevated levels of F2-isoprostanes and F4-neuroprostanes. J Neuro-Oncol 8:295–305

    CAS  Google Scholar 

  • Morita K, Sasaki H, Furuse M, Tsukita S (1999) Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol 147:185–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murata T, Goshima F, Daikoku T, Inagaki-Ohara K, Takakuwa H (2000) Mitochondrial distribution and function in herpes simplex virus-infected cells. J Gen Virol 81:401–406

    Article  CAS  PubMed  Google Scholar 

  • Ozaki H, Ishii K, Arai H, Horiuchi H, Kawamoto T, Suzuki H, Kita T (2000) Junctional adhesion molecule (JAM) is phosphorylated by protein kinase C upon platelet activation. Biochem Biophys Res Commun 276:873–878

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulos MC, Verkman AS (2005) Aquaporin-4 gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. J Biol Chem 280:13906–13912

    Article  CAS  PubMed  Google Scholar 

  • Pirici I, Balsanu T, Bogdan C, Margaritescu C, Divan T, Vitalie V, Mogoanta L, Pirici D, Carare R, Muresanu D (2018) Inhibition of Aquaporin-4 improves the outcome of Ischaemic stroke and modulates brain Paravascular drainage pathways. Int J Mol Sci 19:46

    Article  CAS  Google Scholar 

  • Polster BM, Fiskum G (2004) Mitochondrial mechanisms of neural cell apoptosis. J Neurochem 90:1281–1289

    Article  CAS  PubMed  Google Scholar 

  • Proescholdt MA, Jacobson S, Tresser N, Oldfield EH, Merrill MJ (2002) Vascular endothelial growth factor is expressed in multiple sclerosis plaques and can induce inflammatory lesions in experimental allergic encephalomyelitis rats. J Neuropathol Exp Neurol 61:914–925

    Article  CAS  PubMed  Google Scholar 

  • Rahman A, Anwar KN, Malik AB (2000) Protein kinase C-zeta mediates TNF-alpha-induced ICAM-1 gene transcription in endothelial cells. Am J Phys Cell Phys 279:C906–C914

    Article  CAS  Google Scholar 

  • Read SJ, Kurtz JB (1999) Laboratory diagnosis of common viral infections of the central nervous system by using a single multiplex PCR screening assay. J Clin Microbiol 37:1352–1355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reinert LS, Lopušná K, Winther H, Sun C, Thomsen MK, Nandakumar R, Mogensen TH, Meyer M, Vægter C, Nyengaard JR, Fitzgerald KA, Paludan SR (2016) Sensing of HSV-1 by the cGAS–STING pathway in microglia orchestrates antiviral defence in the CNS. Nat Commun 7:1–12

    Article  CAS  Google Scholar 

  • Roe K, Orillo B, Verma S (2014) West Nile virus-induced cell adhesion molecules on human brain microvascular endothelial cells regulate leukocyte adhesion and modulate permeability of the in vitro blood-brain barrier model. PLoS One 9:e102598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberger J, Petrovics G, Buzas B (2001) Oxidative stress induces proorphanin FQ and proenkephalin gene expression in astrocytes through p38- and ERK-MAP kinases and NF-kappaB. J Neurochem 79:35–44

    Article  CAS  PubMed  Google Scholar 

  • Saffran HA, Pare JM, Corcoran JA, Weller SK, Smiley JR (2007) Herpes simplex virus eliminates host mitochondrial DNA. EMBO Rep 8:188–193

    Article  CAS  PubMed  Google Scholar 

  • Sangwung P, Greco TM, Wang Y, Ischiropoulos H, Sessa WC, Iwakiri Y (2012) Proteomic identification of S-nitrosylated Golgi proteins: new insights into endothelial cell regulation by eNOS-derived NO. PLoS One 7:e31564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saraya AW, Wacharapluesadee S, Petcharat S, Sittidetboripat N, Ghai S, Wilde H, Hemachudha T (2016) Normocellular CSF in herpes simplex encephalitis. BMC Res Notes 9:95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmutzhard E (2001) Viral infections of the CNS with special emphasis on herpes simplex infections. J Neurol 248:469–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schreibelt G, Kooij G, Reijerkerk A, van Doorn R, Gringhuis SI, van der Pol S, Weksler BB, Romero IA, Couraud PO, Piontek J, Blasig IE, Dijkstra CD, Ronken E, de Vries HE (2007) Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. FASEB J 21:3666–3676

    Article  CAS  PubMed  Google Scholar 

  • Sellner J, Dvorak F, Zhou Y, Haas J, Kehm R, Wildemann B, Meyding-Lamadè U (2005) Acute and long-term alteration of chemokine mRNA expression after anti-viral and anti-inflammatory treatment in herpes simplex virus encephalitis. Neurosci Lett 374:197–202

    Article  CAS  PubMed  Google Scholar 

  • Sellner J, Simon F, Meyding-Lamade U, Leib SL (2006) Herpes-simplex virus encephalitis is characterized by an early MMP-9 increase and collagen type IV degradation. Brain Res 1125:155–162

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Black ED, Witkowski ED, Lencer WI, Guerriero V, Schneeberger EE, Turner JR (2006) Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure. J Cell Sci 119:2095–2106

    Article  CAS  PubMed  Google Scholar 

  • Shivkumar M, Milho R, May JS, Nicoll MP, Efstathiou S, Stevenson PG (2013) Herpes simplex virus 1 targets the murine olfactory Neuroepithelium for host entry. J Virol 87:10477–10488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla A, Dikshit M, Srimal RC (1995) Nitric oxide modulates blood-brain barrier permeability during infections with an inactivated bacterium. Neuroreport 6:1629–1632

    Article  CAS  PubMed  Google Scholar 

  • Simko JP, Caliendo AM, Hogle K, Versalovic J (2002) Differences in laboratory findings for cerebrospinal fluid specimens obtained from patients with meningitis or encephalitis due to herpes simplex virus (HSV) documented by detection of HSV DNA. Clin Infect Dis 35:414–419

    Article  PubMed  Google Scholar 

  • Sobel RA, Mitchell ME, Fondren G (1990) Intercellular adhesion molecule-1 (ICAM-1) in cellular immune reactions in the human central nervous system. Am J Pathol 136:1309–1316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sofroniew MV (2005) Reactive astrocytes in neural repair and protection. Neuroscientist 11:400–407

    Article  CAS  PubMed  Google Scholar 

  • Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sofroniew MV (2015) Astrogliosis. Cold Spring Harb Perspect Biol 7:a20420

    Article  CAS  Google Scholar 

  • Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed  Google Scholar 

  • Spindler KR, Hsu T (2012) Viral disruption of the blood–brain barrier. Trends Microbiol 20:282–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamatovic SM, Keep RF, Kunkel SL, Andjelkovic AV (2003) Potential role of MCP-1 in endothelial cell tight junction 'opening': signaling via rho and rho kinase. J Cell Sci 116:4615–4628

    Article  CAS  PubMed  Google Scholar 

  • Stamatovic SM, Dimitrijevic OB, Keep RF, Andjelkovic AV (2006) Protein kinase C -RhoA cross-talk in CCL2-induced alterations in brain endothelial permeability. J Biol Chem 281:8379–8388

    Article  CAS  PubMed  Google Scholar 

  • Stamatovic SM, Johnson AM, Keep RF, Andjelkovic AV (2016) Junctional proteins of the blood-brain barrier: new insights into function and dysfunction. Tissue Barriers 4:e1154641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner I (2011) Herpes simplex virus encephalitis: new infection or reactivation? Curr Opin Neurol 24:268–274

    Article  PubMed  Google Scholar 

  • Stroop WG, McKendall RR, Battles EJ, Schaefer DC, Jones B (1990) Spread of herpes simplex virus type 1 in the central nervous system during experimentally reactivated encephalitis. Microb Pathog 8:119–134

    Article  CAS  PubMed  Google Scholar 

  • Sutter E, de Oliveira AP, Tobler K, Schraner EM, Sonda S, Kaech A, Lucas MS, Ackermann M, Wild P (2012) Herpes simplex virus 1 induces de novo phospholipid synthesis. Virology 429:124–135

    Article  CAS  PubMed  Google Scholar 

  • Taskinen E, Koskiniemi ML, Vaheri A (1984) Herpes simplex virus encephalitis. Prolonged intrathecal IgG synthesis and cellular activity in the cerebrospinal fluid with transient impairment of blood-brain barrier. J Neurol Sci 63:331–338

    Article  CAS  PubMed  Google Scholar 

  • Thomsen LB, Burkhart A, Moos T (2015) A triple culture model of the blood-brain barrier using porcine brain endothelial cells, astrocytes and Pericytes. PLoS One 10:e134765

    Google Scholar 

  • Torres FM, Völcker D, Dörner N, Lenhard T, Nielsen S, Haas J, Kiening K, Meyding-Lamadé U (2007) Aquaporin 4 regulation during acute and long-term experimental herpes simplex virus encephalitis. J Neurovirol 13:38–46

    Article  CAS  Google Scholar 

  • Uchida T, Mori M, Uzawa A, Masuda H, Muto M, Ohtani R, Kuwabara S (2017) Increased cerebrospinal fluid metalloproteinase-2 and interleukin-6 are associated with albumin quotient in neuromyelitis optica: their possible role on blood-brain barrier disruption. Mult Scler 23:1072–1084

    Article  CAS  PubMed  Google Scholar 

  • van Wetering S, van den Berk N, van Buul JD, Mul FPJ, Lommerse I, Mous R, Klooster JPT, Zwaginga JJ, Hordijk PL (2003) VCAM-1-mediated Rac signaling controls endothelial cell-cell contacts and leukocyte transmigration. Am J Physiol Cell Physiol 285:C343–C352

    Article  PubMed  Google Scholar 

  • Wang R, Ke Z, Wang F, Zhang W, Wang Y, Li S, Wang L (2015a) GOLPH3 overexpression is closely correlated with poor prognosis in human non-small cell lung Cancer and mediates its metastasis through upregulating MMP-2 and MMP-9. Cell Physiol Biochem 35:969–982

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wang N, Cai B, Wang GY, Li J, Piao XX (2015b) In vitro model of the blood-brain barrier established by co-culture of primary cerebral microvascular endothelial and astrocyte cells. Neural Regen Res 10:2011–2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitley RJ (2006) Herpes simplex encephalitis: adolescents and adults. Antivir Res 71:141–148

    Article  CAS  PubMed  Google Scholar 

  • Wolburg H, Wolburg-Buchholz K, Kraus J, Rascher-Eggstein G, Liebner S, Hamm S, Duffner F, Grote EH, Risau W, Engelhardt B (2003) Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol 105:586–592

    CAS  PubMed  Google Scholar 

  • Wong D, Dorovini-Zis K, Vincent SR (2004) Cytokines, nitric oxide, and cGMP modulate the permeability of an in vitro model of the human blood–brain barrier. Exp Neurol 190:446–455

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Tsirka SE (2009) Endothelial NOS-deficient mice reveal dual roles for nitric oxide during experimental autoimmune encephalomyelitis. Glia 57:1204–1215

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamamoto M, Ramirez SH, Sato S, Kiyota T, Cerny RL, Kaibuchi K, Persidsky Y, Ikezu T (2008) Phosphorylation of Claudin-5 and Occludin by rho kinase in brain endothelial cells. Am J Pathol 172:521–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA (2007) Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab 27:697–709

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Zhang Y, Wang Z, Wang S, Gao M, Xu R, Liang C, Zhang H (2016) Attenuation of acute phase injury in rat intracranial hemorrhage by Cerebrolysin that inhibits brain edema and inflammatory response. Neurochem Res 41:748–757

    Article  CAS  PubMed  Google Scholar 

  • Yechiel Schlesinger, PTMG, Storch, AGA (1995) Herpes Simplex Virus Type 2 Meningitis in the Absence of Genital Lesions: Improved Recognition with Use of the Polymerase Chain Reaction Author(s): Yechiel Schlesinger, Pablo Tebas, Monique Gaudreault-Keener, Richard S. Buller and Gregory A. Storch Source: Clinical Infectious Diseases, Vol. 20, No. 4 (Apr., 1995), pp. 842–848 Published by: Oxford University Press Stable URL: http://www.jstor.org/stable/4458446 Accessed: 31-12-2016 05:35 UTC. Oxford University Press 4, 842–848

  • You H, Li T, Zhang J, Lei Q, Tao X, Xie P, Lu W (2014) Reduction in ischemic cerebral infarction is mediated through golgi phosphoprotein 3 and Akt/mTOR signaling following salvianolate administration. Curr Neurovasc Res 11:107–113

    Article  CAS  PubMed  Google Scholar 

  • Yu-ping ZHU, TSYL (2013) Astragalus polysaccharides suppress ICAM-1 and VCAM-1 expression in TNF- α -treated human vascular endothelial cells by blocking NF- κ B activation. Acta Pharmacol Sin, 1036-1042

  • Zhang L, Liu H, Peng YM, Dai YY, Liu FY (2015) Vascular endothelial growth factor increases GEnC permeability by affecting the distributions of occludin, ZO-1 and tight juction assembly. Eur Rev Med Pharmacol Sci 19:2621–2627

    CAS  PubMed  Google Scholar 

  • Zhang HT, Zhang P, Gao Y, Li CL, Wang HJ, Chen LC, Feng Y, Li RY, Li YL, Jiang CL (2016) Early VEGF inhibition attenuates blood-brain barrier disruption in ischemic rat brains by regulating the expression of MMPs. Mol Med Rep 15:57–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HT, Zhang P, Gao Y, Li CL, Wang HJ, Chen LC, Feng Y, Li RY, Li YL, Jiang CL (2017) Early VEGF inhibition attenuates blood-brain barrier disruption in ischemic rat brains by regulating the expression of MMPs. Mol Med Rep 15:57–64

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Lu ZN, Guo YJ, Mei YW (2010) Favorable effects of MMP-9 knockdown in murine herpes simplex encephalitis using small interfering RNA. Neurol Res 32:801–809

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Zeng Y, Zhou Q, Guan J, Lu Z (2016a) The effect of captopril on the expression of MMP-9 and the prognosis of neurological function in herpes simplex encephalitis mice. Neurol Res 38:733–739

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Zeng Y, Zhou Q, Guan J, Lu Z (2016b) The effect of cyclin-dependent kinases inhibitor treatment on experimental herpes simplex encephalitis mice. Neurosci Lett 627:71–76

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation (Grant 81571181) of China P.R. HL carried out the literature review and drafted the manuscript. KQ and QH helped to draft the manuscript. QL conceived of, designed, and coordinated the study. WL contributed to and finalized the draft. All authors read and approved the final manuscript.

Funding

This study was supported by the National Natural Science Foundation (Grant 81571181) of China P.R.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Lei or Wei Lu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Qiu, K., He, Q. et al. Mechanisms of Blood-Brain Barrier Disruption in Herpes Simplex Encephalitis. J Neuroimmune Pharmacol 14, 157–172 (2019). https://doi.org/10.1007/s11481-018-9821-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-018-9821-6

Keywords

Navigation