Skip to main content

Advertisement

Log in

Chronic Δ9-Tetrahydrocannabinol Administration Reduces IgE+B Cells but Unlikely Enhances Pathogenic SIVmac251 Infection in Male Rhesus Macaques of Chinese Origin

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Delta9-tetrahydrocannabinol (Δ9-THC) is the major psychoactive component of the cannabis plant. Δ9-THC has been used in the active ingredient of Marinol as an appetite stimulant for AIDS patients. Its impact on progression of HIV-1 infection, however, remains debatable. Previous studies indicated that Δ9-THC administration enhanced HIV-1 infection in huPBL-SCID mice but seemingly decreased early mortality in simian immunodeficiency virus (SIV) infected male Indian-derived rhesus macaques. Here, we determine the chronic effect of Δ9-THC administration using 0.32 mg/kg or placebo (PBO), i.m., twice daily for 428 days on SIVmac251 infected male Chinese-derived rhesus macaques. Sixteen animals were divided into four study groups: Δ9-THC+SIV+, Δ9-THC+SIV, PBO/SIV+ and PBO/SIV (n = 4/group). One-month after daily Δ9-THC or PBO administrations, macaques in groups one and three were challenged intravenously with pathogenic SIVmac251/CNS, which was isolated from the brain of a Chinese macaque with end-staged neuroAIDS. No significant differences in peak and steady state plasma viral loads were seen between Δ9-THC+SIV+ and PBO/SIV+ macaques. Regardless of Δ9-THC, all infected macaques displayed significant drop of CD4/CD8 T cell ratio, loss of CD4+ T cells and higher persistent levels of Ki67+CD8+ T cells compared with uninfected animals. Moreover, long-term Δ9-THC treatment reduced significantly the frequency of circulating IgE+B cells. Only one Δ9-THC+SIV+ macaque died of simian AIDS with paralyzed limbs compared with two deaths in the PBO/SIV+ group during the study period. These findings indicate that chronic Δ9-THC administration resulted in reduction of IgE+B cells, yet it unlikely enhanced pathogenic SIVmac251/CNS infection in male Rhesus macaques of Chinese origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrams DI (1998) Medical marijuana: tribulations and trials. J Psychoactive Drugs 30:163–169. doi:10.1080/02791072.1998.10399686

    Article  CAS  PubMed  Google Scholar 

  • Amedee AM et al. (2014) Chronic Delta(9)-tetrahydrocannabinol administration may not attenuate simian immunodeficiency virus disease progression in female rhesus macaques. AIDS Res Hum Retrovir 30:1216–1225. doi:10.1089/AID.2014.0108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ameri A (1999) The effects of cannabinoids on the brain. Prog Neurobiol 58:315–348

    Article  CAS  PubMed  Google Scholar 

  • Auci DL et al. (1997) IgE-bearing cells and epsilon-specific mRNA in lymphoid organs of two children with AIDS. Pediatr AIDS HIV Infect 8:102–107

    CAS  PubMed  Google Scholar 

  • Bredt BM, Higuera-Alhino D, Shade SB, Hebert SJ, McCune JM, Abrams DI (2002) Short-term effects of cannabinoids on immune phenotype and function in HIV-1-infected patients. J Clin Pharmacol 42:82S–89S

    Article  CAS  PubMed  Google Scholar 

  • Chandra LC et al. (2015) Chronic administration of Delta9-tetrahydrocannabinol induces intestinal anti-inflammatory microRNA expression during acute simian immunodeficiency virus infection of rhesus macaques. J Virol 89:1168–1181. doi:10.1128/JVI.01754-14

    Article  PubMed  Google Scholar 

  • Chen Z et al. (2000) Enhanced infectivity of an R5-tropic simian/human immunodeficiency virus carrying human immunodeficiency virus type 1 subtype C envelope after serial passages in pig-tailed macaques (Macaca nemestrina). J Virol 74:6501–6510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Zhao X, Huang Y, Gettie A, Ba L, Blanchard J, Ho DD (2002) CD4+ lymphocytopenia in acute infection of Asian macaques by a vaginally transmissible subtype-C, CCR5-tropic simian/human immunodeficiency virus (SHIV). J Acquir Immune Defic Syndr 30:133–145

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Crawford RB, Kaplan BL, Kaminski NE (2015) Modulation of HIVGP120 antigen-specific immune responses in vivo by Delta9-tetrahydrocannabinol. J Neuroimmune Pharmacol: the official journal of the Society on NeuroImmune Pharmacology 10:344–355. doi:10.1007/s11481-015-9597-x

    Article  Google Scholar 

  • Croxford JL (2003) Therapeutic potential of cannabinoids in CNS disease. CNS drugs 17:179–202

    Article  CAS  PubMed  Google Scholar 

  • Derocq JM, Segui M, Marchand J, Le Fur G, Casellas P (1995) Cannabinoids enhance human B-cell growth at low nanomolar concentrations. FEBS Lett 369:177–182

    Article  CAS  PubMed  Google Scholar 

  • Eisenstein TK, Meissler JJ (2015) Effects of cannabinoids on T-cell function and resistance to infection. J Neuroimmune Pharmacol: the official journal of the Society on NeuroImmune Pharmacology 10:204–216. doi:10.1007/s11481-015-9603-3

    Article  Google Scholar 

  • Felder CC, Glass M (1998) Cannabinoid receptors and their endogenous agonists. Annu Rev Pharmacol Toxicol 38:179–200. doi:10.1146/annurev.pharmtox.38.1.179

    Article  CAS  PubMed  Google Scholar 

  • Gorantla S, Makarov E, Roy D, Finke-Dwyer J, Murrin LC, Gendelman HE, Poluektova L (2010) Immunoregulation of a CB2 receptor agonist in a murine model of neuroAIDS. Journal of neuroimmune pharmacology: the official journal of the Society on NeuroImmune Pharmacology 5:456–468. doi:10.1007/s11481-010-9225-8

    Article  Google Scholar 

  • Grotenhermen F, Muller-Vahl K (2012) The therapeutic potential of cannabis and cannabinoids. Deutsches Arzteblatt international 109:495–501. doi:10.3238/arztebl.2012.0495

    PubMed  PubMed Central  Google Scholar 

  • Haney M (2002) Effects of smoked marijuana in healthy and HIV + marijuana smokers. J Clin Pharmacol 42:34S–40S

    Article  CAS  Google Scholar 

  • Haney M, Gunderson EW, Rabkin J, Hart CL, Vosburg SK, Comer SD, Foltin RW (2007) Dronabinol and marijuana in HIV-positive marijuana smokers. Caloric intake, mood, and sleep. J Acquir Immune Defic Syndr 45:545–554. doi:10.1097/QAI.0b013e31811ed205

    Article  CAS  PubMed  Google Scholar 

  • Hanzlikova J et al. (2012) Histamine increases the level of IFNgamma produced by HIV-1 specific CTLs and this production depends on total IgE level. J Immunol Methods 375:1–6. doi:10.1016/j.jim.2011.10.006

    Article  CAS  PubMed  Google Scholar 

  • Israel-Biet D, Labrousse F, Tourani JM, Sors H, Andrieu JM, Even P (1992) Elevation of IgE in HIV-infected subjects: a marker of poor prognosis. J Allergy Clin Immunol 89:68–75

    Article  CAS  PubMed  Google Scholar 

  • Kaplan BL (2013) The role of CB1 in immune modulation by cannabinoids. Pharmacol Ther 137:365–374. doi:10.1016/j.pharmthera.2012.12.004

    Article  CAS  PubMed  Google Scholar 

  • Ling B, Veazey RS, Luckay A, Penedo C, Xu K, Lifson JD, Marx PA (2002) SIV(mac) pathogenesis in rhesus macaques of Chinese and Indian origin compared with primary HIV infections in humans. AIDS 16:1489–1496

    Article  PubMed  Google Scholar 

  • Marone G, Florio G, Triggiani M, Petraroli A, de Paulis A (2000) Mechanisms of IgE elevation in HIV-1 infection. Crit Rev Immunol 20:477–496

    Article  CAS  PubMed  Google Scholar 

  • Molina PE, Amedee A, LeCapitaine NJ, Zabaleta J, Mohan M, Winsauer P, Vande Stouwe C (2011a) Cannabinoid neuroimmune modulation of SIV disease. J Neuroimmune Pharmacol: the official journal of the Society on NeuroImmune Pharmacology 6:516–527. doi:10.1007/s11481-011-9301-8

    Article  Google Scholar 

  • Molina PE et al. (2011b) Cannabinoid administration attenuates the progression of simian immunodeficiency virus. AIDS Res Hum Retrovir 27:585–592. doi:10.1089/AID.2010.0218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molina PE et al. (2014) Modulation of gut-specific mechanisms by chronic delta(9)-tetrahydrocannabinol administration in male rhesus macaques infected with simian immunodeficiency virus: a systems biology analysis. AIDS Res Hum Retrovir 30:567–578. doi:10.1089/AID.2013.0182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newton CA, Klein TW (2012) Cannabinoid 2 (CB2) receptor involvement in the down-regulation but not up-regulation of serum IgE levels in immunized mice. Journal of neuroimmune pharmacology: the official journal of the Society on NeuroImmune Pharmacology 7:591–598. doi:10.1007/s11481-012-9361-4

    Article  Google Scholar 

  • Persidsky Y, Fan S, Dykstra H, Reichenbach NL, Rom S, Ramirez SH (2015) Activation of cannabinoid type two receptors (CB2) diminish inflammatory responses in macrophages and brain endothelium. J Neuroimmune Pharmacol: the official journal of the Society on NeuroImmune Pharmacology 10:302–308. doi:10.1007/s11481-015-9591-3

    Article  Google Scholar 

  • Pertwee RG (1997) Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther 74:129–180

    CAS  PubMed  Google Scholar 

  • Picone RP, Kendall DA (2015) Minireview: from the bench, toward the clinic: therapeutic opportunities for cannabinoid receptor modulation. Mol Endocrinol 29:801–813. doi:10.1210/me.2015-1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riggs PK, Vaida F, Rossi SS, Sorkin LS, Gouaux B, Grant I, Ellis RJ (2012) A pilot study of the effects of cannabis on appetite hormones in HIV-infected adult men. Brain Res 1431:46–52. doi:10.1016/j.brainres.2011.11.001

    Article  CAS  PubMed  Google Scholar 

  • Rom S, Persidsky Y (2013) Cannabinoid receptor 2: potential role in immunomodulation and neuroinflammation. J Neuroimmune Pharmacol: the official journal of the Society on NeuroImmune Pharmacology 8:608–620. doi:10.1007/s11481-013-9445-9

    Article  Google Scholar 

  • Roth MD, Tashkin DP, Whittaker KM, Choi R, Baldwin GC (2005) Tetrahydrocannabinol suppresses immune function and enhances HIV replication in the huPBL-SCID mouse. Life Sci 77:1711–1722. doi:10.1016/j.lfs.2005.05.014

    Article  CAS  PubMed  Google Scholar 

  • Sopper S et al. (2003) Impact of simian immunodeficiency virus (SIV) infection on lymphocyte numbers and T-cell turnover in different organs of rhesus monkeys. Blood 101:1213–1219. doi:10.1182/blood-2002-06-1644

    Article  CAS  PubMed  Google Scholar 

  • Srivastava MD, Srivastava BI, Brouhard B (1998) Delta9 tetrahydrocannabinol and cannabidiol alter cytokine production by human immune cells. Immunopharmacology 40:179–185

    Article  CAS  PubMed  Google Scholar 

  • Wang H et al. (2010) Acute infection of Chinese macaques by a CCR5-tropic SHIV carrying a primary HIV-1 subtype B′ envelope. J Acquir Immune Defic Syndr 53:285–291. doi:10.1097/QAI.0b013e3181cc4f4a

    Article  PubMed  Google Scholar 

  • Williams JC, Appelberg S, Goldberger BA, Klein TW, Sleasman JW, Goodenow MM (2014) Delta(9)-tetrahydrocannabinol treatment during human monocyte differentiation reduces macrophage susceptibility to HIV-1 infection. J Neuroimmune Pharmacol: the official journal of the Society on NeuroImmune Pharmacology 9:369–379. doi:10.1007/s11481-014-9527-3

    Article  Google Scholar 

  • Xue J et al. (2013) Repressive effect of primary virus replication on superinfection correlated with gut-derived central memory CD4(+) T cells in SHIV-infected Chinese rhesus macaques. PLoS One 8:e72295. doi:10.1371/journal.pone.0072295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The authors would like to thank US NIH NIDA (3R01DA020419-02S1 to ZC and PM) and China’s mega project 2012ZX10001006001009 for financial supports, David Shurtleff and Diane Lawrence for discussion and Δ9-THC arrangement, Xilin Wu and Yanxu Zhang for data analysis, and David Ho and KY Yuen for scientific advice. We also thank Shenzhen San-Ming Program and Hong Kong Research Grant Council HKU5/CRF/13G as well as the University Development Fund of the University of Hong Kong and Li Ka Shing Faculty of Medicine Matching Fund to HKU AIDS Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Patricia Molina or Zhiwei Chen.

Ethics declarations

Conflicts of Interest

The authors of this manuscript do not report conflict of interest.

Additional information

Qiang Wei, Li Liu and Zhe Cong contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Q., Liu, L., Cong, Z. et al. Chronic Δ9-Tetrahydrocannabinol Administration Reduces IgE+B Cells but Unlikely Enhances Pathogenic SIVmac251 Infection in Male Rhesus Macaques of Chinese Origin. J Neuroimmune Pharmacol 11, 584–591 (2016). https://doi.org/10.1007/s11481-016-9674-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-016-9674-9

Keywords

Navigation